
ACOUSTIC EVENT DETECTION AND CLASSIFICATION IN SMART-ROOM 
ENVIRONMENTS: EVALUATION OF CHIL PROJECT SYSTEMS 

Andrey Temko1, Robert Malkin2, Christian Zieger3, Dusan Macho1, Climent Nadeu1, Maurizio 
Omologo3 

1TALP Research Center, UPC, Barcelona, Spain 
2interACT, CMU, Pittsburgh, USA 

3ITC-irst, Povo (TN), Italy 
1{temko, dusan, climent}@talp.upc.es, 2rgmalkin@cs.cmu.edu, 3{zieger, omologo}@itc.it 

 

ABSTRACT 
The identification of acoustic events that are produced in a 
meeting room environment may help to detect and describe 
the human and social activity that takes place in the room. In 
the framework of the CHIL project, three different sites have 
developed and tested several preliminary systems for 
acoustic event classification (AEC) and acoustic event 
detection (AED). A primary AED evaluation task with the 
testing portions of the isolated sound databases and the 
seminar recordings produced in CHIL was designed, and it 
was carried out in February 2006. Additionally, a secondary 
AEC evaluation task was carried out using only the isolated 
sound databases. In this paper, a short description of the 
systems is presented, and the evaluation setup and results, 
for both AED and AEC, are reported and discussed. 

1. INTRODUCTION 

Although speech is certainly the most informative 
acoustic event, other kind of sounds may also carry useful 
information in a meeting room environment. In fact, in that 
environment the human activity is reflected in a rich variety 
of acoustic events, either produced by the human body or by 
objects handled by humans. Consequently, detection or 
classification of acoustic events may help to detect and 
describe the human and social activity that takes place in the 
room. For example: clapping or laughter inside a speech 
discourse, a strong yawn in the middle of a lecture, a chair 
moving or door noise when the meeting has just started, etc 
Additionally, the robustness of automatic speech recognition 
systems may be increased by a previous detection of the non-
speech sounds lying in the captured signals.  

Acoustic Event Detection/Classification (AED/C) is a 
recent sub-area of computational auditory scene analysis [1] 
that deals with processing acoustic signals and converting 
them into symbolic descriptions corresponding to a listener's 
perception of the different sound events that are present in 
the signals and their sources. While acoustic event 
classification deals with events that have already been 
isolated from its temporal context, acoustic event detection 

refers to both identification and localization in time of events 
in continuous audio streams.  

In this paper, we present the results of the AED/C 
CLEAR evaluations carried out in February 2006 by the 
three participant partners from the CHIL project [2] which 
sign this paper (UPC, CMU and ITC). The primary 
evaluation task was AED of the testing portions of the two 
isolated sound databases (from ITC and UPC) and 4 UPC’s 
seminar recordings produced in CHIL. Additionally, a 
secondary AEC evaluation task was designed using only the 
isolated sound databases, and it is also included in this 
report. All the partners agreed the set of acoustic classes a 
priori before recording the databases. A common metric was 
also developed at the UPC and agreed with the other 
partners. ELDA was in charge of the scoring task. In this 
paper, the three participant sites present their own 
preliminary systems for the tasks of AED and AEC. Two of 
them are based on the classical Hidden Markov Model 
(HMM) [3] approach used in continuous speech recognition, 
and the other uses Support Vector Machine (SVM) [4] as the 
basic classifier. Since the evaluation procedure was not 
strictly defined, there are some differences between the 
degrees of fitting of the systems to the testing data: two 
partners developed specific systems for each room, but not 
the third; one partner uses a system trained differently for 
seminars and isolated event databases, etc. If those 
differences are neglected, it is observed that the system 
closest to the usual speech recognition approach offers better 
average AED results.  

The paper is organized as follows: Section 2 gives the 
experimental setup. Specifically, the databases used in the 
evaluations are described in Subsection 2.1, while the 
evaluation scenario and metrics are given in Subsection 2.2 
and 2.3, respectively. Section 3 reviews the systems used by 
each of the AED/C evaluation participants. The results 
obtained by the detection and classification systems in the 
CLEAR evaluations are shown and discussed in Section 4. 
Conclusions are presented in Section 5. 
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2. EVALUATION SETUP 

The conducted experiments were carried out on 2 
different kinds of databases, namely: 2 databases of isolated 
acoustic events recorded at the UPC and IRST, and 5 
interactive seminars recorded at the UPC.  

The two former databases contain a set of isolated 
acoustic events that occur in a meeting room environment 
and were recorded specially for the CHIL AED/C task. The 
recorded sounds do not have temporal overlapping and no 
interfering noises were present in the room.  

The UPC database of isolated acoustic events [5] was 
recorded using 84 microphones, namely, Mark III (array of 
64 microphones), three T-shape clusters (4 mics per cluster), 
4 tabletop directional and 4 omni-directional microphones. 
The database consists of 13 semantic classes plus 
“unknown”. Approximately 60 sounds per each of the sound 
classes were recorded as shown in Table 1. Ten people 
participated in recordings: 5 men and 5 women. There are 3 
sessions per each participant. At each session, the participant 
took a different place in the room out of 7 fixed different 
positions.  

The ITC database of isolated acoustic events [6] was 
recorded with 32 microphones. They were mounted in 7 T-
shaped arrays (composed by 4 microphones each one) plus there 
were 4 table microphones. The database contains 16 semantic 
classes of events. Approximately 50 sounds per almost each of 
the sound classes were recorded as shown in Table 1. 9 people 
participated at the recordings. For each experiment 4 positions 
in the room were located. People swapped their positions after 
every session. During each session every person reproduced a 
complete set of acoustic events.  

Additionally, the AED techniques were applied to the 
database of the interactive seminars [7] recorded at the UPC. 
5 interactive seminars have been collected. The difference 
with two previous databases of isolated acoustic events is 
that seminars consist of real environment events that may 
have temporal overlapping with speech and/or other acoustic 
events. Each seminar consists of a 10-20 minutes 
presentation to a group of 3-5 attendees in a meeting room. 
During and after the presentation there are questions from 
the attendees with answers from the presenter. There is also 
activity in terms of people entering/leaving the room, 
opening and closing the door, standing up and going to the 
screen, some discussion among the attendees, coffee breaks, 
etc. The databases was recorded using 88 different sensors 
that include 3 4-microphoneT-shaped arrays, 1 64-
microphone Mark III array, 4 omni-directional table-top 
microphones, 4 directional table-top microphones, and 4 
close-talk microphones. The number of events of one of the 
seminars is summarized in Table 1.  

The AED/C evaluation is done on 12 semantic classes 
that are defined as:  

• Knock (door, table)  [kn]  
• Door slam   [ds] 
• Steps    [st] 
• Chair moving   [cm] 
• Spoon (cup jingle)  [cl] 

Table 1. Number of events for the UPC and ITC databases 
of isolated acoustic events, and the UPC interactive 
seminar. 

Event type Number of events 
 UPC -iso ITC-iso UPC-sem 

Door knock 50 47 4 
Door open 60 49 7 
Door slam 61 51 7 
Steps 73 50 43 
Chair moving 76 47 26 
Spoon/cup 64 48 15 
Paper work 84 48 21 
Key jingle 65 48 2 
Keyboard 66 48 14 
Phone ring 116 89 6 
Applause 60 12 2 
Cough 65 48 5 
Laugh 64 48 8 
Unknown 126  12 
Mimo pen buzz  48  
Falling object  48  
Phone vibr.  13  
Speech   169 

 
• Paper wrapping   [pw] 
• Key jingle   [kj] 
• Keyboard typing   [kt] 
• Phone ringing/Music  [pr] 
• Applause   [ap] 
• Cough    [co] 
• Laugh    [la] 

 
Also there are two other possible events that are present but are 
not evaluated 

• Speech    [sp] 
• Unknown   [un] 

 
Actually, the databases of isolated acoustic events 

contain more semantic classes than the above-proposed list 
as shown in Table 1. For that reason, the classes that are out 
of the scope of the current AED/C evaluation were marked 
as “unknown”.  

Two main series of experiments are performed: AED and 
AEC. AED was done in both isolated and real environment 
conditions. For the task of AEC and isolated AED the 
databases of isolated acoustic events were split into training 
and testing parts, namely, for the UPC database sessions 1 
and 2 were used for training and session 3 for testing; for the 
ITC database sessions 1-3 were used for training and session 
4 for testing. For the task of AED in real environment all 
databases of isolated acoustic events and one of five 
seminars were allowed to use for training and developing, 
while for testing a 5-minute extract from each of the 
remaining 4 seminars was proposed forming in total 4 five-
minute segments. The selection of extracted parts was done 
by ELDA.  
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The primary evaluation task was defined as AED 
evaluated on both the isolated databases and the seminars. 
As it was mentioned above, the acoustic events that happen 
in real environment may have temporal overlapping. The 
appropriate metric was developed to score the system 
outputs. It consists of two steps: projecting all levels of 
overlapping events into a single-level reference transcription 
and comparing a hypothesized transcription with the single 
level reference transcription.  

For instance, suppose we have a reference that contain 
overlapping of level 2 and can be represented as shown in 
Figure 1 where REF_1: _la_kt_ and REF_2: _co_ds_cl_la_ 
model two overlapping acoustic event sequences. Then we 
can form the single-level reference transcription and a list of 
events to detect as shown in Table 2.  

Following definitions are needed to compute the metric:  
• An event is correctly detected when the hypothesized 

temporal center is situated in the appropriate single-level 
reference interval and the hypothesized label is a 
constituent or a full name of this interval single-level 
reference label. After an event is claimed to be correctly 

detected, it is marked as detected in the list of events to 
detect. 

• Empty intervals are the reference intervals that contain 
speech, silence or events belonging to the “unknown” 
class.  

• A substitution error occurs when the temporal center of 
the hypothesized event is situated in the appropriate 
single-level reference interval and the label of the 
hypothesized event is not constituent or the full name of 
the label of that single-level reference interval. 

• A deletion error occurs when there is an event in the list 
of events to detect that is not marked as detected. 

• An insertion error occurs when the temporal center of the 
hypothesized event is not situated in any of the single-
level reference intervals (i.e. are situated in empty 
intervals) 

Finally, Acoustic Event Error Rate (AEER) is computed as  
AEER= (D+I+S)/N * 100 

where N is the number of events to detect, D – deletions, I – 
insertions, and S – substitutions. 

3. ACOUSTIC EVENT DETECTION AND 
CLASSIFICATION SYSTEMS 

3.1. UPC AEC/D systems 

A system based on SVM was used at the UPC for the 
task of AED/C. A DAG [8] multi-classification scheme was 
chosen to extend the SVM binary classifier to the multi-
classification problem. 5-fold cross-validation [4] on the 
training data was applied to find the optimal SVM hyper 
parameters that were σ for the chosen Gaussian kernel, and 
C, a parameter that controls the amount of data allowed to be 
misclassified during the training procedure. In all the 
experiments the third channel of the Mark III microphone 
array was used. 

Firstly, the sound is downsampled from the initial 44kHz 
sampling rate to 22 kHz, and framed (frame length=25ms, 
overlapping 50%, Hamming window). For each frame, the 
set of spectral parameters that showed the best results in [9] 
was extracted. It consists of the concatenation of two types 
of parameters: 1) 16 Frequency-Filtered (FF) log filter-bank 
energies [10] taken from ASR, and 2) a set of other 
perceptual parameters: zero-crossing rate, short time energy, 
4 subband energies, spectral flux calculated for each of the 
defined subbands, and pitch. The first and second time 
derivatives were also calculated for the FF parameters. In 
total, a vector of 59 components is build to represent each 
frame.  

3.1.1. AEC system 

The mean, standard deviation, entropy and autocorrelation 
coefficient of the parameter vectors were computed along 
the whole event signal thus forming one vector per audio  

Figure 1. From reference transcription with 
overlapping of level 2 to reference single-level 
transcription. 

Table 2. Obtained single-level reference transcription and 
a list of events to detect 

Single-level reference 
transcription 
1 – co1 
2 – la1 
3 – la1_ds1 
4 – la1 
5 – la1_cl1 
6 – cl1 
7 – la2 
8 – kt1_la2 
9 – la2 

List of events to detect:  
1 – cough1 
2 – laugh1 
3 – ds1 
4 – spoon1 
5 – laugh2 
6 – keyboard1 

1      2 3 4 5  6          7    8      9   

REF 1

REF 2

Single-level 
reference 
transcription 
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event with 4x59 elements. Then, that vector of statistical 
features was used to feed the SVM classifier, which was 
trained on the training set of the two databases of isolated 
acoustic events. The resulting system, herewith named 
“UPC-C”, was used to test both UPC and ITC databases of 
isolated acoustic events, so neither feature nor system 
adaptation related to a specific database was applied. 

3.1.2.  AED system 

The scheme of the AED system herewith named “UPC-
D” is shown in Figure 2. Using a sliding window of one 
second with a 100ms shift, a vector of 4x59 statistical 
features was extracted like in the AEC system described in 
the last sub-section for each position of the window (every 
100ms).  

The statistical feature vector is then fed to an SVM-based 
silence/non-silence classifier trained on silence and non-
silence segments of the two isolated acoustic events 
databases. At the output, a binary sequence of decisions is 
obtained. A median-filter of size 17 is applied to eliminate 
too short silences or non-silences.  

 Then, the SVM-based event classifier is applied to each 
detected non-silence segment. The event classifier was 
trained on a parameters extracted from a sliding window 
with 100ms shift applied to each event in the way that the 
first and the last windows still include more than 50% of the 
event content. The event classifier is trained on both isolated 
acoustic events and seminar databases to classify a set of 12 
defined acoustical classes, plus classes “speech” and 
“unknown”. A sequence of decisions made on a 1-second 
window every 100ms is obtained within the non-silence 
segment. That sequence is smoothed by assigning to the 
current decision point the label that is most frequent in a 
string of five decision points around the current one. Also, a 
confidence measure is calculated for each point as the 
quotient between the number of times that the chosen label 
appears in the string and the number of labels in the string 
(5).  

The sequence of decisions from the non-silence segment 
is then processed again to get the detected events. In that 
step, only the events that have their length equal  or  larger  
than  the average event length  are kept,  and the  number  of  
events kept in the non-silence segment is forced to be lower 
than a number which is proportional to the length of the 

segment. The average length of the events is estimated from 
the training and development databases. Finally, if the 
average of the above mentioned computed confidences in a 
detected event is less than a threshold, the hypothesized 
event is marked as “unknown”; otherwise, it maintains the 
assigned label. 

3.2. CMU AEC/D systems 

The CMU acoustic event classification and detection 
systems were based on continuous density HMMs. We first 
downsampled the input signal from a single microphone to 
16kHz, 2-byte quality. From this signal, we extracted 15 
Mel-Frequency Cepstral Coefficients (MFCCs) at a rate of 
100 frames per second. We additionally normalized these 
MFCCs to zero mean and unity variance using means and 
variances specific to each site. We used custom HMM 
topologies for each sound class; these topologies were 
induced using the k-variable k-means algorithm due to 
Reyes-Gomez and Ellis [11]. The k-variable k-means 
algorithm is a greedy approach to topology induction based 
on the leader-follower clustering paradigm; it uses a 
threshold to control the tendency to add new states to a class 
HMM.  

We trained five complete sets of class HMMs using all 
available data from the isolated databases. After training 
these five complete HMM sets, we further trained site-
specific feature space adaptation matrices that are reflected 
in systems “CMU-C1” and “CMU-C2”. We used the 
maximum likelihood approach suggested by Leggetter and 
Woodland [12] and Gales [13]. Finally, as suggested by 
Reyes-Gomez and Ellis, we explored the combination of 
scores of HMMs trained with different thresholds on a per-
site basis. We found that by combining three models for the 
ITC data and two for the UPC data, we were able to achieve 
a combined misclassification rate of less than 6% for 
acoustic event classification task. 

For the acoustic event detection task, we wished to 
explore the possibility of pre-segmenting the data with a 
simple HMM before applying our more complex 
classification HMMs which used more than one Viterbi path 
to assign a final score. The scheme of the system is presented 
in Figure 3. Hence, we trained segmentation HMMs which 
included three classes: speech, CHIL event, and other. To 
train these HMMs, we used the same approach as for the 

 

 
 

 

 

Figure 2. UPC acoustic event detection system 

 
 
 
 
 
 
 
 
 
 

Figure 3. CMU acoustic event detection system 
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classification systems above, except that we added the UPC 
seminar data for training. The detection systems herewith 
will be named “CMU-D1” and “CMU-D2”. We chose the 
optimal HMMs for segmentation on a per-site basis. Further, 
since we also needed to control the rate at which these 
HMMs created segments in the data, we optimized separate 
insertion penalties for the ITC isolated database, the UPC 
isolated database, and the UPC seminar database. This 
approach yielded poor results on the isolated condition, and 
very poor results for the seminar condition. 

3.3. ITC AEC/D systems 

The AED/C system that was studied at the ITC-irst is 
based on continuous density HMM. The scheme of the 
system is presented in Figure 4.  

A signal acquired by a single microphone belonging to a 
T-shaped array was used in experiments. The front-end 
processing is based on 12 Mel-Frequency Cepstral 
Coefficients (MFCCs) [3] and log-energy of the signal. The 
analysis step is 10 ms with a Hamming window of 20 ms. 
The resulting parameters together with their first and second 
order time derivatives are arranged into a single observation 
vector of 39 components. 

Each event is described by a 3 state HMM model. All of 
the HMMs have a left-to-right topology and use output 
probability densities represented by means of 32 Gaussian 
components with diagonal covariance matrices. HMM 
training was accomplished through the standard Baum-
Welch training procedure. 

For AEC task two different sets of models were created 
to fit the ITC and UPC rooms; the corresponding systems 
will herewith be named “ITC-C1” and “ITC-C2”. The first 
one is trained on the ITC isolated acoustic events database 
and the other is trained on the UPC isolated acoustic events 
database. The selected training data refers to the recordings 
of a single microphone belonging to a T-shaped array. 

For the AED task the same models adopted in the AEC 
task were used, but also the models of speech and silence 
were added; the corresponding systems will herewith be 
named “ITC-D1” and “ITC-D2”. To train the model of 
speech, recordings of meetings in the ITC room were used, 
while for the model of silence the database of isolated 
acoustic events was used exploiting the silence moments 
between each event. 

To overcome the detection of events that are overlapped 
with speech that occur in the interactive seminars, the 
strategy based on the contamination of the events with 
speech in the training procedure was exploited; that is 
reflected in the system “ITC-D3”. An artificial database was 

created by adding speech to the isolated events imposing 
different SNR values, from 0 to 15 dB. At this moment the 
system is not trained to detect events that overlap with other 
events except speech. 

4. RESULTS AND DISCUSSION 

 Table 3 shows classification error rates obtained using 
different classification systems described previously. Since 
the evaluation procedure was not strictly defined, there are 
some differences in the degree of fitting of the systems to the 
two testing databases (ITC and UPC isolated DB): both 
CMU and ITC systems use two sets of models, one for each 
testing database, while UPC system uses one set of models 
for the both testing databases. We can observe that the 
system based on SVM obtained the same or better results 
than the systems based on the HMM technology, despite the 
fact that database-specific systems were used in the case of 
HMM.  

 In the detection task, as explained in the previous 
sections, participants took two different approaches: a) First 
performing segmentation and then classification (UPC and 
CMU systems) b) Merging the segmentation and 
classification in one step as performed by the Viterbi search 
in the state-of-the-art ASR systems (ITC systems) Table 4 
shows detection error rates for the two isolated event 
databases and the interactive seminar database. The lowest 
detection error rates are obtained by the ITC systems, which 
are based on the approach b). Notice that both CMU and 
UPC systems achieved better results than the ITC systems in 
the classification task (Table 3), however they both rely on a 
previous segmentation step (the approach a)). If we add up 
the results obtained for the detection task for both isolated 
and seminar conditions neglecting the test-specificities of the 
CMU and ITC systems, we obtain the following error rates: 
UPC: 69.6%, CMU: 80.5%, ITC: 46.8%. Although there 
might be a number of reasons to explain the differences 

Figure 4. ITC acoustic event detection system 

Table 3. Error rates (in %) for AE classification task of 
the systems explained in Section 3 

Systems
Databases 

UPC 
C 

CMU 
C1 

CMU 
C2 

ITC 
C1 

ITC 
C2 

ITC iso  4.1 7.5 ---- 12.3 ---- 
UPC iso  5.8 ---- 5.8 ---- 6.2  

Table 4. Error rates (in %) for AE detection task of the 
systems explained in Section 3 
 

Sys 
DBs 

UPC 
D 

CMU
D1 

CMU 
D2 

ITC 
D1  

ITC 
D2 

ITC 
D3 

 ITC iso  64.6 45.2 ---- 23.6 ---- ---- 
 UPC iso  58.9 ---- 52.5 ---- 33.7 ---- 
 UPC sem 97.1 ---- 177.3 ---- ---- 99.3 
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across the systems, we conjecture that the initial 
segmentation step included in both UPC and CMU systems, 
but not in the ITC systems, is the main cause of the lower 
overall detection performance of these systems. Further 
investigation is needed in the direction of the approach a) to 
see whether it can outperform the well-established scheme 
b).  

Besides, it can be seen from the Table 4, that the error 
rates increase significantly for the UPC seminar database. 
One of possible reasons of such a bad performance is that it 
is difficult to detect low-energy acoustic classes that overlap 
with speech, such as e.g. “chair moving”, “steps”, “keyboard 
typing”, and “paper work”. Actually, these classes cover the 
majority of the events in the UPC seminars and probably 
they are the cause of the bad results we obtained in the 
seminar task. A usage of multiple microphones might be 
helpful in this case. 

5. CONCLUSIONS 

The presented work focused on the CLEAR evaluation tasks 
concerning the detection and classification of acoustic events 
that may happen in a lecture/meeting room environment. In 
this context, we evaluated two different tasks, acoustic event 
classification (AEC) and acoustic event detection (AED), 
AED being the primary objective of the evaluation. Two 
kinds of databases were used, two databases of isolated 
acoustic events and a database of interactive seminars 
containing a significant number of acoustic events of 
interest. 

Preliminary detection and classification systems from 
three different participants were presented, which allowed an 
evaluation of different approaches for both classification and 
detection. The UPC system is based on the Support Vector 
Machine (SVM) discriminative approach and uses Frequency 
Filtering features and four kinds of perceptual features. Both 
the CMU and ITC systems are based on the Hidden Markov 
Model (HMM) generative approach and they use MFCC 
features. 

In the classification task, the UPC SVM-based system 
showed better performance than the two systems based on 
HMM. In the detection task, we could see two different 
approaches: a) first performing segmentation and then 
classification (UPC and CMU systems), and b) merging the 
segmentation and classification in one step as performed by 
the Viterbi search in the state-of-the-art Automatic Speech 
Recognition (ASR) systems (ITC systems). In the presented 
results, the approach b) showed better performance than the 
approach a). Notice however that the b) approach (and 
actually the ITC systems) is a well-established ASR 
approach developed for many years and thus can be 
considered as a challenging reference for the other presented 
approaches/systems in the acoustic event detection task. 
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