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Abstract 
We present several innovative techniques that can be applied in 
a PPRLM system for language identification (LID), obtaining  a 
61.8% relative error reduction from our base system. First, the 
application of a variable threshold in score computation, 
dependent on the average scores in the language model, 
provided a 35% error reduction. A random selection of 
sentences for the different sets and the use of silence models 
also improved the system. Then, to improve the classifier, we 
compared the bias removal technique (up to 19% error 
reduction) and a Gaussian classifier (up to 37% error reduction). 
Then, we included the acoustic score in the Gaussian classifier 
(2% error reduction) and increased the number of Gaussians to 
have a multiple-Gaussian classifier (14% error reduction). 
Finally, we included additional acoustic HMMs of the same 
language with success (18% relative improvement). We will 
show how all these improvements have been mostly additive. 

1. Introduction 
Automatic language identification (LID) has become an 
important issue in recent years in speech recognition systems. 
To do language identification, first we have to identify which 
factors are more critical to distinguish between languages. We 
can identify several factors of differentiation: the realization of 
allophones and sounds and information related to the sequence 
of allophones, which has demonstrated to be vital: some 
sequences of allophones do not exist in one language (or occur 
very little), so the identification of those sequences is crucial for 
LID. Another possibility is to use prosodic features as the 
intonation may differ drastically between languages. 

The most used technique is the phone-based approach, like 
Parallel phone recognition followed by language modeling 
(PPRLM) [1][2], which classifies languages based on the 
statistical characteristics of the allophone sequences and has a 
very good performance. Another popular technique is the GMM 
classifier, which we will not consider here. In [3] the “GMM 
tokenizer” is described.  

Another possibility is to base the identification on the score 
given by a full continuous speech recognizer. As we 
demonstrated in [4], the results obtained with this technique are 
probably the best that can be obtained, as it models both 
acoustic and phonetic information, together with the sequence 
of allophones and words, but it has some important 
disadvantages: a complete speech recognition system has to be 
trained, a lot of labeled data is needed and it would be difficult 
to have a real-time system for several languages.  

An interesting variant of PPRLM is presented in [5] with 
several proposals: different ways to combine the allophone 
sequence information with the acoustic models, use of durations 
(prosodic information) and a tree-based language model. It is 
remarkable the integration of several sources of information. 

In [6] they use PPR, include bias removal to improve the 
classification, and include acoustic and allophone sequence 
information in the classifier, using a Gaussian classifier similar 
to the one we propose. 

This is a continuation of the work done in [2] and [7]. We 
are going to focus now on improving the classifier, using bias 
removal and a multiple-Gaussian classifier mixing acoustic and 
allophone sequence information. This work has been done under 
project INVOCA, for the public company AENA, which 
manages Spanish airports and air navigation systems. 

2. System description 

2.1. Database 

We use a continuous speech database (Invoca database from 
now on), which consists of very spontaneous conversations 
between controllers and pilots. For speech recognition it is a 
very difficult task, noisy and very spontaneous, as in “Lufthansa 
four two seven nine start up approved clear to Frankfurt 
standard departure Somosierra one echo three six left squawk 
one zero two three report parking position”.  

We have one big drawback with the database: all speakers 
are native Spanish. So, many of them do not reflect all the 
phonetic variations in English. Besides, the controllers use to 
mix Spanish for greetings and goodbyes even when the rest of 
the sentence is in English. Also, many company/ airport names 
are pronounced in Spanish inside the English sentence. 

For the training set, we had some 8 hours of speech for 
Spanish and 6 hours for English. For the validation set, we had 
some 1 hour for both languages and 700 sentences. We have 
considered sentences with a minimum of 0.5 sec., and a 
maximum of 10 sec., with an average duration of just 4.5 sec., 
which is an another important limitation in our system. 

2.2. Brief description of PPRLM 

The main objective of PPRLM (Parallel Phone Recognition 
Language Modeling) is to model the frequency of occurrence of 
different allophone sequences in each language. This system has 
two stages. First, a phone recognizer takes the speech utterance 
and outputs the sequence of allophones corresponding to it. 
Then, the sequence of allophones is used as input to a language 
model (LM) module. In recognition, the LM module scores the 
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probability that the sequence of allophones corresponds to the 
language. It can use several phone recognizers modeled for 
different languages. Interpolated n-gram language models are 
used to approximate the n-gram distribution as the weighted 
sum of the probabilities of the n-grams considered (weights α1, 
α2, and α3 for unigram, bigram and trigram, respectively). In 
our case, we have considered up to trigrams.  

2.3. Results presentation 

In all our experiments we have obtained the results for all 
possible combinations of weights α1, α2, and α3, in 0.1 steps. 
Throughout the paper we will present the results (Sentence error 
rate) for the average of all weight combinations (Average 
column in the tables) and for the best result (Minimum column). 
In general, best (minimum) results occur with the biggest 
contribution from the trigram score, reflecting that the trigram is 
the most discriminative feature for language identification. In 
all tables, we present in parenthesis the relative improvement in 
relation to the base system considered. 

3. Initial improvements to the base system 

3.1. Threshold in score computation 

As the size of the database is small, there are quite a big number 
of trigrams that do not have enough training samples and, so, 
their estimates are not reliable. We tested several alternatives 
for LM smoothing, but the results were very similar, showing 
little improvement. We decided to apply a fixed threshold or 
additive factor to the score value, in a similar way to the 
variance flooring applied in HMM estimation: use as the 
minimum variance a fraction of the average variance. The 
objective is to give more importance to the allophone sequences 
that have a high probability in one language and, at the same 
time, reduce the effect of sequences that have not appeared in 
training. We considered two alternatives (in the log domain): 

1) n-gram specific fixed additive factor. We propose the 
following formula for the score: 
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where N is the order of the N-gram, αi is the weight for the ith n-
gram and Pi(F) is its probability. βi is the additive factor. The 
optimum values were βuni=0.027, βbi=0.04 y βtri=0.08. 
Obviously, it is not a nice approach as β values are too empiric. 

2) Variable additive factor. We made the βi dependent on 
the average scores in the LM (
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To estimate the optimum λ factor, we observed that very 
little differences in performance were observed using λ values 
between 4 and 8, which is a nice feature. In Table 1 we can see 
the results obtained with both alternatives: the improvement is 
outstanding, showing the suitability of this approach, especially 
for the second approach. Even though it is simple, it has been 
the best improvement in the experiments of this paper. 

Table 1. Results for different additive factors 

Thresh. technique Average Minimum 
None 8.27 6.80 

n-gram specific 7.70 (6.9%) 5.84 (14.1%) 
Variable 6.26 (24.3%) 4.46 (34.3%) 

3.2. Random selection of sentences / silence models 

In our database, the same controller uttered a large group of 
sentences sequentially in the database until there was a shift 
change. We were afraid that our system was making some kind 
of speaker modeling instead of language modeling, which was 
confirmed by the results in Table 2. So, for similar cases we 
recommend to do a random selection of sentences. Besides, in 
our original system, we did not consider silence models in the 
output of the phone recognizer, but it seems that we were not 
estimating important trigrams which are especially relevant for 
language identification, e.g. ‘ai-t-sil’ in the word ‘flight’, which 
is extremely rare in Spanish. So, we run an experiment 
considering the silence models with the results shown in Table 
2, with a relevant improvement. 

Table 2. Results with random selection / silence models 

 Average Minimum 
Original lists 6.26 4.46 

Randomly selected 5.24 (16.6%) 4.24 (5.0%) 
+ silence models 5.03 (4.0%) 3.92 (7.55%) 

4. Bias removal in the classifier 
As is described in [6], the general PPRLM approach has a flaw: 
there is the possibility of having a different bias in the log-
likelihood score for the languages considered. This is especially 
relevant when the phone recognizers have a different number of 
units (we have 49 phonetic units for Spanish and 61 for 
English). The language with fewer units will have higher 
probabilities in the LM score, and so the classifier will tend to 
select that language. To eliminate this bias, two options are 
proposed in [6]. We have experimented with the first one: we 
use the original LM score minus the average of all LM scores in 
the training database (a language-dependent bias).  

Database for bias estimation: We can divide the training 
database in 3 different sets: the first one to train the acoustic 
models, the second one to train the LMs and the third one to 
estimate the bias value. This could be the optimal option if the 
database were large enough, as all estimations are independent. 
The problem is that, as our database is small, all results 
worsened due to insufficient training data. So, we had to discard 
this option. Another option is to estimate the bias value in the 
original training sets. We considered two possibilities: 

1. Estimate the bias with the LMs training list. This is the 
worst option: as the LMs have been estimated using this list, the 
bias value estimated is not reliable because it is too optimistic. 

2. Estimate the bias with the acoustic models training list. 
Even though this data does not participate in the LM estimation, 
it could be a dangerous option. But we observed that the LM 
score distribution in this set was very similar to the score 
distribution in the test set. So, we followed this option. 

In Table 3 we present the results obtained using bias 
removal in a system without the threshold described in Section 
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3.1. We can see an outstanding improvement, showing that this 
technique is effective when there is an obvious bias in the log-
likelihood score as we had presumed. 

Table 3. Results for bias removal 

 Average Minimum 
No threshold 8.27 6.80 
Bias removal 6.98 (15.6%) 5.5 (18.9%) 

But we have to admit that the same technique applied to the 
best system so far – after the threshold technique – showed no 
relevant improvement, just 0-1% relative. Most probably, the 
additive factor compensates the bias effect.  

5. Gaussian classifier 
Another possibility to tackle the issue of different bias in the 
LM scores is to use a Gaussian classifier instead of the usual 
decision formula applied in PPRLM. With all the scores 
provided by every LM in the PPRLM module we prepare a 
score vector. With all the sentences in the training database we 
estimate the Gaussian distribution of their respective score 
vectors for every language. So, we will have a Gaussian 
distribution for each language in the system. Now, the 
recognized language is not the one with the largest average 
score. The distance between the input vector of LM scores and 
the Gaussian distributions for every language is computed, and 
the distribution which is closer to the input vector is the one 
selected as identified language. 

Database for Gaussian estimation: For the Gaussian 
classifier, the same considerations as for bias removal can be 
made. In this case, the problem addressed is even more 
notorious, as we need more data to estimate a reliable Gaussian 
distribution than we need to estimate just the bias in the score. 
So, again we decided to use the acoustic models training list. 

Score vector for the Gaussian classifier: As we have 
several scores in the PPRLM system, there are several options 
for the feature vector of scores: 

1. Basic. Use all PPRLM scores as is (M acoustic models x 
N language models, 2 x 2 in our case). This would be the typical 
option. The problem is that these scores are quite unstable. 

2. Individual scores. We then considered the possibility to 
model the distribution of each n-gram in the score computation 
for our feature vector: the score for unigram, bigram and 
trigram. The drawback now is the increase in dimensionality. 

3. Differential scores. Instead of using absolute values, we 
considered differential scores, which for every sentence are 
computed as the difference between the score obtained by the 
LM of the same language of the acoustic models considered 
(Spa-Spa or Eng-Eng) and the score obtained by the other 
‘competing’ language: SC0 – SC1 and SC3 – SC2 in Figure 1. 
So, this score can be computed both in training and testing. We 
also considered the differentiation between individual scores: 
unigram, bigram and trigram, with 6 features in total. 

 
Figure 1. PPRLM Score average 

We observed that these differential scores are much more 
homogeneous, being the result that the estimated distributions 
exhibit a much smaller overlap with the competing language. 

In a multiple language system the proposal for the 
differential score would be:  

SC current language – Average (SC other languages) 

In Table 4, we can see the results for the 3 techniques in a 
system without the Threshold described in Section 3.1. As can 
be seen, the results for the Basic and Individual options are 
similar and quite bad, probably because two facts: the great 
variations in score and the insufficient size of the database. 
Nevertheless, the results for the Differential scores are 
outstanding, more than 30% relative. 

Table 4. Results for the Gaussian classifier 

Score vector Average Minimum 
No threshold 8.27 6.80 

Basic 11.43 (-38.2%) 7.7 (-13.8%) 
Individual 10.94 (-32.3%) 7.7 (-13.8%) 

Differential 5.82 (29.6%) 4.3 (36.8%) 
 
If we apply the technique with the best system so far, the 

minimum goes to 3.71% (5.41% improvement), which is a 
smaller improvement, but are better than for the bias removal 
technique. Again, the improvement of the threshold technique is 
not additive with the Gaussian classifier. In any case, these 
results are a fantastic starting point, as it is easy to include 
acoustic information using this Gaussian classifier, and use 
multiple Gaussians. 

5.1. Inclusion of acoustic information 

One drawback in PPRLM modeling is that the basic technique 
only takes into account information regarding the allophone 
sequence. We propose the inclusion of acoustic information 
using our Gaussian classifier, adding new features to our score 
vector: the acoustic score obtained in the phone recognizers of 
both languages. We observed that the values of the acoustic 
score were not homogeneous at all. So, we decided to use again 
the “differential scores” idea: we used the difference between 
the score for the Spanish phone recognizer and the score for the 
English phone recognizer as feature value. So, we just have one 
feature in the acoustic score vector. 

Database considered: Obviously, we need to estimate the 
acoustic score distributions using non-training data. So, the 
dataset chosen for this task is the LMs training list, because 
those sentences have not been used to train the phone models. 
So, we have estimated Gaussian distributions for allophone 
sequence scores and acoustic scores separately, as they use 
different lists for the estimation.  

The new result using acoustic information was 3.67% with 
a 2% relative improvement for the Minimum, but 13.5% for the 
Average. So, results show that acoustic information 
complements better the least robust systems. 

5.2. Multiple-Gaussian classifier 

One of the nicest characteristics of a Gaussian classifier is that 
we can grow up to multiple Gaussians to better model the 
distribution that represents our classes. We have used different 
number of Gaussians for allophone sequence score and acoustic 
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score, as their feature vector dimension is completely different: 
6 and 1 features respectively. To increase the number of 
Gaussians we have followed the classical HMM modeling 
approaches (Gaussian splitting and Lloyd reestimation after 
each splitting), so we will not describe them here. In Table 5 we 
can see a summary of results obtained using different numbers 
of Gaussians for both scores.  

Table 5.  Multiple-Gaussian classifier 

Number of Gaussians 
LM  Acoustic  Average Minimum 

1 1 4.69 3.67 
2 1 4.35 (7.2%) 3.52 (4.1%) 
2 2 4.14 (11.7%) 3.31 (9.8%) 
3 1 4.01 (14.5%) 3.24 (11.7%) 
3 2 4.12 (12.1%) 3.23 (12.0%) 
3 3 4.06 (13.4%) 3.31 (9.8%) 
4 2 4.20 (10.5%) 3.16 (13.9%) 
4 3 4.08 (13.0%) 3.17 (13.6%) 

 
We can extract several interesting conclusions: 

• The improvements are really remarkable, up to 14% in 
minimum value and almost 15% in average. 

• As we expected, the best system uses more Gaussians for 
LM score than for acoustic score. 

• It is a nice feature that all systems provide better results 
than the mono-Gaussian system, showing that there is 
enough training data for the multiple-Gaussian system. 

• There are better improvements in the Average value. 
Again, the more powerful estimation of multiple Gaussians 
has more relevance in the less robust systems (the ones 
with bigger weights for unigram and bigram).  

• The difference between the Average and Minimum values 
has reduced drastically, showing these techniques’ 
robustness, so the n-gram weights are less relevant. 

5.3. Additional acoustic HMMs for the classifier 

We considered the inclusion of new HMM models in our 
system, as it was quite easy with our Gaussian classifier. So far, 
nobody has reported the use of several models of the same 
language but different channel conditions in PPRLM. We had 
two additional acoustic models for Spanish: one based on 
SpeechDat, telephone noisy speech, and another one with 
speech recorded in quiet conditions (‘Quiet’). So, both of them 
are quite different to the original Invoca database used so far. 
We wanted to test if some additional improvements could be 
obtained using them. These are the conclusions: 

• Using them with no adaptation, results do not improve. 
• Using them with task adaptation (models adapted using 

MAP with the Invoca training list) the improvements are 
remarkable: 2.60% error rate with an 18% relative 
improvement. 

• Only one of them is needed, the inclusion of both 
SpeechDat and ‘Quiet’ did not improve, probably because 
the increase of dimensionality in the feature vector causes 
a poor estimation. 

So, it is clear that they can provide complementary information 
to the classifier when task adaptation is used. 

5.4. Inclusion of four-grams in PPRLM 

The inclusion of four-grams did not improve our system. They 
were poorly estimated in all cases. So, we discourage it unless 
for a huge database system. 

6. Conclusions 
We have described several improvements in a language 
identification system using PPRLM scores and acoustic 
information. The system has improved remarkably, up to 2.60% 
error rate with an overall 61.8% relative improvement, 
especially considering that the average duration of the sentences 
is just 4.5 seconds. Increasing the sentence minimum duration to 
2 seconds instead of 0.5 (5.3 seconds average duration) we 
obtain a 0.82% error rate. So, most errors in our system come 
from extremely short sentences. 

The application of the variable additive factor in score 
computation provided a significant error reduction in all cases. 
It even compensated the bias mismatch in the LM scores, as the 
results have shown. 

For the classifier, we compared the bias removal technique 
(up to 19% error reduction) and a Gaussian classifier (up to 37% 
error reduction), showing that the last one provides better results 
and has the potential to include additional information. The use 
of differential scores to estimate the Gaussian distributions is 
also crucial for the technique. 

The inclusion of acoustic score in the Gaussian classifier 
provided a 2% error reduction and the increase in the number of 
Gaussians provided an additional 14% error reduction. The 
inclusion of additional HMMs of the same language but 
different channel conditions provides a nice improvement if task 
adaptation is used. 
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