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ABSTRACT

Speech recognition systems are usually speaker-inde-
pendent, but they are not as good as speaker-dependent
systems for specific speakers. An initial speaker-inde-
pendent system can be adapted, transforming it into a
speaker-dependent system. This is done to improve the
recognition accuracy. In this work, a new general acous-
tic model adaptation technology is presented, using the
MLLR algorithm iteratively. Experiments have been per-
formed on TT2 spanish speech corpus. The initial acous-
tic models were trained from the Albayzin speech database.
Results, obtained for 10 speakers, show us an improve-
ment in speech recognition accuracy.

1. INTRODUCTION

Speech recognition improvements have contributed to the
widespread use of speech recognition systems in several
applications [1, 2, 3]. Speech recognition systems rely
on acoustic and language models to perform the recogni-
tion of input utterances. In this work, acoustic models are
the part of a speech recognition system we are going to
deal with. Acoustic models aim to model sequences of
feature vectors that describe a specific sound (phonemes,
syllabes, etc.). Acoustic models are usually continuous-
density Hidden Markov Models (HMM) [4, 5], in which
each state models its output distribution by a mixture of
gaussians. Each gaussian is defined by a feature mean
vector and a covariance matrix.

Parameter estimation of an acoustic model is done by
means of the well-known Baum-Welch algorithm [6]. A
good estimation of these models requires a lot of training
data. This makes speaker-independent systems common,
because obtaining a large amount of training data for this
kind of systems is easier than obtaining a large amount of
data for a speaker-dependent system. However, for a spe-
cific speaker, more accurate results can be achieved by
using speaker-dependent acoustic models, provided that
sufficient data is available. Unfortunately, obtaining enough
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speaker-specific data for speaker-dependent acoustic model
estimation is very difficult.

To solve this problem, the idea consists of obtaining a
speaker-dependent acoustic model by adapting a speaker-
independent acoustic model to a specific-speaker, using
only a small quantity of specific-speaker data.

Several speaker adaptation techniques have been deve-
loped in the last few years [7, 8, 9]. These techniques can
be divided into two main groups, depending on what is
modified (input signal or acoustic model):

• When modifications are done over the input sig-
nal it is called spectral mapping; in this kind of
techniques, the acoustic signal (or its codification)
is altered to adapt the signal to a general acoustic
model; therefore, with these techniques, the new
speaker is approximated to the reference speakers.

• When modifications are done on the acoustic mod-
els it is called model mapping; in this case, acoustic
models are altered in order to make these models
nearer to the source input signal from speaker; that
is, we approximate general acoustic models to the
input signal from the speaker.

The most important speaker adaptation techniques [10,
11] are:

Acoustic signal modification

• Dynamic Time Warping (DTW)[12]: Dynamic ti-
me-warping is a dynamic programming algorithm
that aims to find the reference signal alignment that
minimizes the distance to input signal.

• Spectral-Bias[13]: This method uses the informa-
tion incorporated in speaker independent Hidden
Markov Models (HMM) and estimates a transfor-
mation of the means of the models. Although this
method transforms the means of the HMM, it is
in this group because the aim of the method con-
sists of improving the match between the reference
speakers and the new speaker (that is, the spectral
mapping idea) rather than to improve the model-
ing accuracy for the new speaker (that is, the model
mapping idea).

Zaragoza • Del 8 al 10 de Noviembre de 2006 IV Jornadas en Tecnologia del Habla

277



• Vocal Tract Length Normalizacion (VTLN)[14]: Hu-
man vocal tract length produces variation in main
components of source speech signal. With the VTLN
algorithm, and assuming a different vocal tract length
for each individual speaker, source speech signal
from a speaker, is transformed into a normalized
signal which was used to train the acoustic models;
this technique uses a simple transformation func-
tion that depends on a parameter (warping factor)
and the signal frequency in each instant.

Acoustic model modification

• Maximum adaptation a posteriori (MAP)[8]: This
is a general probability distribution estimation tech-
nique that allows to introduce previous knowledge
(in this case, the parameters of the speaker indepen-
dent acoustic models) in the estimation process.

• Regression-based Model Prediction, (RMP)[15]: This
method is based on linear regression; the idea con-
sists of using the available adaptation material to
make an initial maximum a posteriori (MAP) adap-
tation for the model means; These MAP estimates
are then used to predict the means of the models
which were not present in the adaptation data; this
is done via a set of regression coefficients, which
are computed using previously trained speaker de-
pendent models.

• Maximum Likelihood Linear Regression, (MLLR)[7]:
With this method, feature means of general acous-
tic models are adapted to the speaker’s voice us-
ing a linear regression model which is estimated by
means of maximum likelihood; this is the method
we used for our speaker adaptation system, and is
explained below in Section 2.

In this article, results with the iterative application of
Maximum Likelihood Linear Regression Model are pre-
sented. Our technique is based on making succesive speaker
adaptations, by means of the MLLR algorithm, with the
aim of improving the speaker’s acoustic models re-using
the adaptation data. The final aim is to obtain a better ac-
curacy in the speech recognition for that specific speaker.

2. THE MLLR SPEAKER ADAPTATION
TECHNIQUE

This method is based on the application of an adaptation
matrix, W, over the acoustic model parameters. This ma-
trix W is computed by means of maximum likelihood,
having as input data the general acoustic model parame-
ters without adaptation and the speaker voice to be adapted.
An acoustic model completely adapted to the speaker is
obtained with the application of this method.

To start with the MLLR algorithm [7, 11] description,
we must consider the case of a continuous density HMM
system with Gaussian output distributions. A particular

distribution, s, will be characterised by a mean vector, µs,
and a covariance matrix Cs. Given a parametrized speech
frame vector o, the probability density of that vector being
generated by distribution s will be bs(o)

bs(o) =
1

(2π)n/2
e−1/2(o−µs)′C−1

s (o−µs)

where n is the dimension of the observation vector and ′

denotes the transpose vector.
The MLLR algorithm can be summarize in: per each

gaussian s, compute the new speaker estimated µ̂s param-
eter from general µs parameter. This is obtained using:

µ̂s = Wsξs

where:

• Ws is the adaptation matrix.

• ξs = [ω, µs1 , . . . , µsn ] is the extended vector of
means, with shift ω.

Thus, the probability density function for the adapted sys-
tem for the gaussian s is:

bs(o) =
1

(2π)n/2
e−1/2(o−Wsξs)

′C−1
s (o−Wsξs)

Usually, it is impossible to estimateWs for each gaus-
sian s. Therefore, regression classes are defined as gaus-
sian sets that share the same adaptation matrix.

The number and optimum composition of regression
classes cannot be defined in an analitic manner. Thus,
its selection is based, usually, in the amount of available
adaptation data, phonetic split between models (decision
trees) and different join criterium between models (pho-
netic features, distance between models, etc).

To estimate the transformation matrix, given a regres-
sion class R = {s1k, s2k, . . . , sRk}, Ws is estimated by
maximum likelihood:

Ŵs = max
Ws

Pr(Op|λ̂)

where:

• Op is the sequence of observations

• λ̂ is the model obtained applying Ws

Ws is obtained with the optimization of an auxiliar func-
tion, Q.

Q(λ, λ̂) =
∑

θ∈Θ

∑

k∈Ωb

Pr(Op, θ, k|λ) log(Pr(Op, θ, k|λ̂))

where,
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Figure 1. Iterative MLLR architecture.

• Θ is the state sequence set

• Ωb is the gaussian set

The estimation of Ws with this formulation is usu-
ally complicated and time-consuming. To estimate it, a
Viterbi approximation can be used, which corresponds to
the following formula:

Ŵs =

(
T∑
t=1

Otξ′srk

)(
T∑
t=1

ξsrkξ
′
srk

)−1

(1)

To apply this approximation, the observations Ot are
initially decoded in a forced way (using a transcription).
The decoding process gives the gaussian with maximum
likelihood for each observation, whose mean is ξsrk. With
both data, the Equation (1) is applied to compute Ŵs.

3. ADAPTATION ARCHITECTURE

In this paper we show new results on speaker adaptation
with the MLLR algorithm, using this algorithm iterati-
vely. The new idea parts from applying the MLLR al-
gorithm to do the estimation of the new speaker adapted
acoustic models. This acoustic model estimation is done
by means of the MLLR algorithm, but results show that
successive adaptations of adapted models improve, some-
times, the results.

Figure 1 shows the architecture of the method. Ini-
tially, the input data are simple wave files of sentences
obtained from the speaker to be adapted; they are our ini-
tial source of information. These wave files are passed
to the MLLR algorithm along with the general acoustic
model to be adapted. MLLR gives us a new acoustic
model adapted to the speaker.

This is the classic application of the MLLR algorithm,
but a new adapted acoustic model can be obtained from
the first adapted acoustic model with the same method.
To do this, in a second iteration of the algorithm, the first
adapted acoustic model acts as the new general acous-
tic model, which is adapted using again the MLLR al-
gorithm (see the feed-back in Figure 1). Thus, the MLLR
algorithm uses the same wave files as input as in the first

iteration, and each time an adaptation of the speaker is
done only by changing the original acoustic model by the
new adapted model. Doing this successively and obtain-
ing the sentence accuracy rate (SAR) of a test set of the
adapted speaker for each adaptation, it is possible to see if
the process improves results, and allows us to obtain the
best acoustic model adapted for the speaker in a number
of iterations.

Our initial set of acoustic models was obtained from
the Albayzin spanish speech corpus [16]. The acoustic
models are Hidden Markov Models (HMM) which repre-
sent monophones. Their topology is the classical three-
state, left-to-right with loops and without skips. The out-
put distribution for each state is modelled by a mixture
of 128 gaussians with diagonal covariance matrixes. The
number of components of the gaussians are 33 (ten cep-
strals plus energy, plus first derivative and acceleration).

4. CORPUS DESCRIPTION

The TT2 project [17] is devoted to the construction of
Computer Aided Translation (CAT) systems. In this project,
text translation is combined with speech input in order to
improve the performance of the human translator. The
usual scenario of an interaction between the computer ap-
plication and the human translator follows these steps:

1. The computer application proposes a translation of
the current sentence.

2. The human translator accepts part (a prefix) of the
proposed translation.

3. The human translator types in possible corrections.

4. The computer application dynamically changes its
proposed translation as the human translator types
it in.

5. Return to step 2 until the current sentence is com-
pletely translated.

There are several ways in that the human translator
can accept a prefix. In the classical approach, s/he will
point with the mouse at (or use the keyboard to move to)
the end of the correct part of the sentence. In the case
of speech input, s/he can utter any subsentence (one or
more words) present in the translation, perhaps preceded
by the words “accept” and/or “until”. The prefix up to that
subsentence will be accepted. In case of ambiguity, the
accepted prefix will be the sortest one. Some examples
are presented in Table 1

A speech corpus was acquired to simulate this sce-
nario when translating Xerox printer manuals to Spanish
(Xerox corpus)[17]. This acoustic corpus consisted of a
total of 7,4891 utterances of subsentences derived from

1The original number of sentences was 7,500, but some of them were
corrupted
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Table 1. Some examples of uttered subsentences and
selected prefixes for the proposed sentence “adición de
fuentes a la lista de recursos”.

Uttered sentence Selected prefix
lista adición de fuentes a la lista
aceptar hasta fuentes adición de fuentes
hasta de adición de
hasta de recursos adición de fuentes a la lista de recursos

the sentences of the task. These subsentences were utter-
ances of 125 complete sentences of the task, chosen from
the Xerox corpus. Five segmentations into prefixes and
suffixes were randomly performed on this set. A random
prefix was selected for each suffix generated. The words
“aceptar”, “hasta” and “aceptar hasta” were added as pre-
fixes to some of these selected subsentences, giving a total
number of 625 different sentences to be uttered. A sam-
ple of possible segmentations for a sentence is presented
in Table 2

Ten speakers (six male, four female) were recruited.
The sentences were divided into five different sets of 125
sentences. One of these sets was chosen as the adaptation
set and was common to all the speakers; the other four
were distributed among the speakers (five speakers shared
two of these sets and the other five shared the remaining
two sets). The acquisition was performed by each speaker
at three different sessions (at different times of the day, in
order to capture variabilities in speech intonation). Differ-
ent subsets of the groups were acquired in each session.
In each session, the selected speaker uttered a total num-
ber of 250 utterances (i.e., the selected sentences were
repeated twice). Thus, this acquisition gave a total num-
ber of 750 utterances per speaker. 250 sentences were se-
lected to be used to make speaker adaptation and the other
500 sentences were selected to test the system. Both are
disjoint groups of sentences.

The acquisition was performed using a high quality
microphone, at 16kHz sampling rate and 16 bits per sam-
ple. The total duration of the acquired signal was nearly
5 hours, although nearly half of the acquired signal was
silence (because of the small length of the uttered sen-
tences). The adaptation material was close to 1.5 hours,
given by a total of 2,479 utterances.

5. RESULTS

The graphs in Figures 2, 3 and 4 show the different re-
sults for a sample of three speakers. Each graph is drawn
for one speaker; Y-axis represents sentence accuracy rate
(SAR) and X-axis represents the number of iterations of
the MLLR algorithm (up to a total of 50 iterations). Then,
x = 0 means SAR with the general acoustic models,
x = 1 means SAR with one iteration of the MLLR algo-
rithm, x = 2 means SAR with two iteration of the MLLR
algorithm and so on. In cmartinez speaker (Figure 2) it
is possible to see how iterative adaptations progressively
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Figure 2. Sentence accuracy rate in each iterative adap-
tation for cmartinez speaker.
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Figure 3. Sentence accuracy rate in each iterative adap-
tation for pdel speaker.

improve SAR results. 2 more speakers (i.e., 3 out of ten)
present a similar behaviour.

For pdel speaker, Figure 3 shows us an irregular im-
provement with the different adaptations (i.e., sometimes
one more iteration improves the results and sometimes it
makes them worse). This irregular behaviour appears in
other 5 more speakers as well.

In nalcacer speaker (Figure 4) there is no improve-
ment with any adaptation. The best result was obtained
with the initial general acoustic models without adapta-
tion. No other speaker presents a similar evolution in the
results.

The first three columns of Table 3 represent the SAR
results for the ten speakers: column 1, without adapta-
tion; column 2, with only one adaptation; and column 3,
with the best adaptation. The last column represents the
number of iterations of the adaptation algorithm used to
obtain the best result, from a total of 50 iterations.

From these results, it seems clear that in most cases
iterative adaptation provides a significative improvement
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Table 2. Example of prefixes, suffixes and prefixes of suffixes randomly derived for the sentence “adición de fuentes a la
lista de recursos”.

Prefix Suffix Prefixes of the suffix
adición de fuentes a la lista de recursos fuentes a, fuentes a la lista de recursos

adición de fuentes a la lista de recursos a la lista de
adición de fuentes a la lista de recursos la, la lista de

adición de fuentes a la lista de recursos de recursos
adición de fuentes a la lista de recursos recursos
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Figure 4. Sentence accuracy rate in each iterative adap-
tation for nalcacer speaker.

Table 3. Speaker sentence accuracy rate.
Speaker No adapt. 1 adapt. Best adapt. Iteration
alagarda 86.32 90.74 93.16 29
ecubel 91.37 94.71 96.08 24
cmartinez 96.80 97.40 98.0 24
jcivera 82.91 86.64 90.18 11
jandreu 94.20 95.80 96.80 40
pdel 82.36 87.37 91.98 23
evidal 89.16 90.36 90.56 3
lrodriguez 96.20 97.20 98.00 4
mnacher 91.97 92.77 92.77 1
nalcacer 96.79 96.39 None 0

in the recognition accuracy. What it is not clear it the op-
timal number of iterations MLLR must be applied; most
speakers need more than 20 iterations, but others get the
optimal result with less than 5 iterations. Only in one case
the application of the adaptation makes the results worse
than those obtained with non-adapted models.

In Table 4 it is shown the mean SAR results without
adaptation, with only one adaptation and, finally, with the
best adaptation for each speaker, from a set of 50 iterative
adaptations. From these mean results, it can be concluded
that, in general, iterative adaptation improves the recog-
nition accuracy.

Table 4. Sentence accuracy rate means.
Mean before adaptation 90.81
Mean at first adaptation 92.94
Mean with best adaptation 94.43

6. CONCLUSION AND FUTURE WORK

The main conclusion is that, in general, several iterative
adaptations seem to improve the speech recognition accu-
racy. But this technique has the problem that it is difficult
to know what is the best number of adaptations to do, and
sometimes more adaptations can make the system results
worse.

In the future, we plan to formalise this new adapta-
tion technique in a mathematical manner. One interesting
point is to obtain an automatic and test-independent way
of determining the optimal number of iterations. In the
practical side, we plan to use this new technique in some
industry speech projects, to make the speech recognition
systems more reliable.
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282


