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ABSTRACT

Tracking speakers in multiparty conversations constitutes
a fundamental task for automatic meeting analysis. In
this work, we present the Person Tracking systems
developed at UPC for audio, video and audio-video
modalities. The proposed systems are designed to deal
robustly in both single and multiperson localization task
independently on the environmental conditions. Novelties
proposed are aimed to enhance the accuracy of the
system independently on the application scenario and
to reduce the computational complexity. Besides the
technology description, experimental results conducted
for the CLEAR evaluation workshop are also reported.

1. INTRODUCTION

The automatic analysis of meetings recorded in multi-
sensor rooms is an emerging research field. In this
domain, localizing and tracking people and their speaking
activity play fundamental roles in several applications,
like microphone array beamforming or steering of pan-
tilt-zoom cameras towards the active speaker. To locate
persons with unobtrusive far-field sensors, either video or
audio sources can be used, though eventually the most
accurate and robust techniques will likely be based on
multimodal.

The degree of reliable information provided by person
localization systems on the basis of the audio and video
signals collected in a smart-room environment with a
distributed microphone and video network, depends on
a number of factors such as environmental noise, room
reverberation, person movements and camera occlusions.
These factors, among others, demand an effort on the
development of new robust systems capable of dealing
with adverse environments.

In the present work, we get an insight on the develop-
ment and design of robust Person Tracking systems based
on audio, video and audio-video modalities. Results ob-
tained in the CLEAR evaluation campaign and compar-
ison among mono and multimodal systems are provided
showing the performance of the proposed algorithms.

This work has been partially sponsored by the EC-funded project
CHIL [1] (IST-2002-506909) and by the Spanish Government-funded
project ACESCA (TIN2005-08852).

2. AUDIO PERSON TRACKING SYSTEM

Conventional acoustic person localization and tracking
systems can be split into three basic stages. In the first
stage, estimations of such information as Time Difference
of Arrival or Direction of Arrival is usually obtained from
the combination of the different microphones available.
In general, in the second stage the set of relative delays
or directions of arrival estimations are used to derive
the source position that is in the best accordance with
them and with the given geometry. In the third optional
stage, a tracking of the possible movements of the sources
according to a motion model can be employed.

The SRP-PHAT [2] algorithm (also known as Global
Coherence Field [3]) performs and integrates the two first
stages of localization in a robust and smart way. In
general, the goal of localization techniques based on SRP
(Steered Response Power) is to maximize the power of
the received sound source signal using a delay-and-sum
or a filter-and-sum beamformer. In the simplest case, the
output of the delay-and-sum beamformer is the sum of
the signals of each microphone with the adequate steering
delays for the position that is explored. Thus, a simple
localization strategy is to search for the energy peak
through all the possible positions in 3D space. Concretely,
SRP-PHAT algorithm searches for the maximum of the
contribution of the cross-correlations between all the
microphone pairs across the space. The main strength
of this technique consists on the combination of the
simplicity of the steered beamformer approach with the
robustness offered by the PHAT weighting.

The proposed system for Audio Person Tracking is
based on the SRP-PHAT algorithm with some additional
robust modifications. The system design has been aimed
to develop a robust system with independency on the
acoustic and room conditions, such as the number of
sources, their maneuvering modes or the number of
microphones.

2.1. Brief Description of the SRP-PHAT Algorithm

As already mentioned above, the SRP-PHAT algorithm
searches for the maximum of the contribution of the
cross-correlations between all the microphone pairs
across the space. The process can be summarized into
four basic steps:
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Figure 1. On the left, zenithal camera snapshot. On the right, example of the Sound Map obtained with the SRP-PHAT
process.

Step 1 The exploration space is firstly split into
small regions (typically of 5-10 cm). Then,
theoretical delays from each possible exploration
region to each microphone pair is pre-computed
and stored.

Step 2 Cross-correlations of each microphone pair
are estimated for each analysis frame. Concretely,
the Generalized Cross Correlation with PHAT
weighting [4] is considered. It can be expressed
in terms of the inverse Fourier transform of the
estimated cross-power spectral density (Ĝx1x2(f))
as follows,

R̂x1x2(τ) =
∫ ∞

−∞

Ĝx1x2(f)

|Ĝx1x2(f)|
ej2πfτdf (1)

Step 3 The contribution of the cross-correlations is
accumulated for each exploration region using the
delays pre-computed in Step 1. In this way, it is
obtained a kind of Sound Map as the one shown in
Figure 1.

Step 4 Finally, the position with the maximum score
is selected as the estimated position.

2.2. The Implementation of the Robust Audio Person
Tracker

On the basis of the conventional SRP-PHAT, a robust
system for Audio Person Tracking is developed. The main
novelties introduced and some aspects related to other
implementation details are introduced in the following.

2.2.1. Implementation Details

The analysis frame consists of Hanning windowed blocks
of 4096 samples, 50% overlapped, obtained at a sample
rate of 44.1 kHz. The FFT computation dimension is
fixed to 4096 samples.

2.2.2. Adaptive Smoothing Factor for the Cross-Power
Spectrum (CPS) Estimations

Smoothing over time of the GCC-PHAT estimations
is a simple and efficient way of adding robustness
to the system. This smoothing can be done in the
time domain (GCC-PHAT) or in the frequency domain
(CPS). Considering the smoothed cross-power spectrum
Ĝx1x2(k, f) in time instant k and the instantaneous esti-
mation Gx1x2(k, f) our system performs the smoothing
in the frequency domain as follows,

Ĝx1x2(k, f) = βĜx1x2(k − 1, f) + (1 − β)Gx1x2(k, f)
(2)

From experimental observation it can be seen that the
right selection of this β factor is crucial in the system
design. A high smoothing value can greatly enhance
the results obtained in an almost static scenario, while it
can be dramatically inconvenient in a scenario with many
moving speakers.

Hence, an adaptive smoothing factor has been de-
signed. This adaptive factor is obtained based on the ve-
locity estimation provided by a Kalman filter.

2.2.3. Two-Pass SRP Search

It can be seen from experimental observations that most
of the information for a rough localization is concentrated
in the low-frequency bins of the GCC-PHAT, while high
frequency bins are useful in order to obtain a finest
estimation given a first coarse estimation. Taking into
account this observation a two-pass SRP search has been
designed:

Coarse Search This search procedure is performed
only in the x-y axis (z is assumed to be 1.5 m),
with a searching cell dimension of 16 cm and only
using the low frequency information of the cross-
correlations (f < 9kHz). A first coarse estimation
is obtained from this search, say (x1, y1, 150) cm.

Fine Search A new limited search area around the
obtained coarse estimation is defined (x1 − 50 :
x1 + 50, y1 − 50 : y1 + 50, 110 : 190) cm. In
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this new fine search, dimension of the cell search
is fixed to 4 cm for the x-y axis and to 8 cm for
the z-axis. In the fine search all the frequency
information of the cross-correlations is used and a
more accurate estimation is obtained.

Moreover, the double SRP searching procedure is
adequate to reduce computational load, since the fine
exploration is only performed across a very limited area.

2.2.4. Confidence Threshold

In SRP-PHAT algorithm the position with the maximum
value obtained from the accumulated contributions of all
the correlations is selected (Step 4). This value is assumed
to be well-correlated with the likelihood of the given
estimation. Hence, this value is compared to a fixed
threshold (depending on the number of microphone-pairs
used) to reject/accept the estimation. The threshold has
been experimentally fixed to 0.5 for each 6 microphone
pairs.

Finally, it is worth noting that although a Kalman filter
is used for the estimation of the adaptive CPS smoothing
factor, it is not considered for tracking purposes. The
reason is that the Kalman filter design and the data
association strategies adopted showed a different impact
depending on the scenario. In other words, it showed to
be too much dependent on the number and the velocities
of sources to perform correctly.

3. VIDEO PERSON TRACKING SYSTEM

For this task we propose creating a 3D representation
of the room combining the views from a calibrated [5]
set of cameras. The scene is discretized in to box-
shaped regions, voxels, and then each voxel is classified
as foreground or background. Indeed, the foreground
voxels provide enough information for precisely object
detection and tracking. The image at each camera view is
segmented forming foreground regions. This foreground
regions are then projected and combined in the 3D space
forming volumes, where the 3D objects must lie, using
the Shape from silhoute technique. The main drawback of
the method is that it doesn’t always capture the true shape
of the object, as concave shape regions are not expressed
in the silhouettes. However, this is not a severe problem
in a tracking application as the aim is not to reconstruct
photorealistic scenes.

After the voxelization process (see figure 2), a
connected component analysis CCA follows to cluster and
label the voxels into meaningful 3D-blobs [6, 7, 8] , from
which some representative features are extracted. Finally,
there is a template-based matching process aiming to
find persistent blob correspondences between consecutive
frames.
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Figure 2. The system block diagram showing the chain
of functional modules

4. MULTIMODAL PERSON TRACKING SYSTEM

Multimodal Person Tracking is done based on the audio
and video person tracking technologies described in the
previous sections. These two technologies may have
different nature, for example different frame rate, the
video tracking system is able to track several persons, but
usually only one person estimate is given by the audio
tracking system and only when actively speaking, etc. A
multi-modal system aiming on the fusion of information
proceeding from these two technologies has to take into
account these differences.

We expect to have far more position estimates from
the video system than from the audio system since
persons in the smart room are visible by the cameras
during most of the video frames; in contrary, the
audio system can estimate the person’s position only if
she/he is speaking (so called active speaker). Thus, the
presented multimodal approach relies more on the video
tracking system and it is extended to incorporate the
audio estimates to the corresponding video tracks. This
is achieved by first synchronizing the audio and video
estimates and then using data association techniques.
After that a decentralized Kalman filter is used to provide
a global estimate of person’s position. The frame rate of
the multimodal tracking is the same as that of the video
system.

4.1. Audiovisual Fusion

The Kalman filter algorithm provides an efficient compu-
tational solution for recursively estimating the position, in
situations where the system dynamics can be described by
a state-space model. A detailed description of the Kalman
filter for tracking can be found in [10, 11].

The decentralized Kalman filter [12] is used for
the fusion of audio and video position estimates. As
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shown in Figure 3, the system can be divided in two
modules associated with the audio and video systems.
Each modality computes a local a-posteriori estimate
x̂i[k|k], i = 1, 2 of the person position using a local
Kalman filter (KF1 and KF2, respectively), based on the
corresponding observations y1[k], y2[k]. These partial
estimates are then combined to provide a global state
estimate x̂[k|k] at the fusion center such as:

x̂[x|x] = P[k|k]
(
P−1[k|k−1]x̂[k|k−1]

+
2∑

i=1

[
P−1

i [k|k]x̂i[k|k] −P−1
i [k|k−1]x̂i[k|k−1]

])
(3)

P−1[k|k] = P−1[k|k−1] +
2∑

i=1

[
P−1

i [k|k] −P−1
i [k|k−1]

]
(4)

The global estimate of the system state is obtained
weighting the global and local estate estimate with
the global error covariance matrix P[k|k] and their
counterparts Pi[k|k] at the audio and video systems.
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Figure 3. Structure of the decentralized Kalman
filter. The fusion center combines the local estimates to
compute a global estimate of the system state.

5. EVALUATION

Person Tracking evaluation is run on the data collected by
the CHIL consortium for the CLEAR 06 evaluation. Two
tasks are considered: single and multiperson tracking,
based on non-interactive seminar (collected by ITC and
UKA) and highly interactive seminar (collected by IBM,
RESIT and UPC) recordings, respectively. Complete
description of the data and the evaluation can be found
in [13].

5.1. Summary of the Experimental Set-Up

5.1.1. Data description

Room set-ups of the contributing sites present two basic
common groups of devices: the audio and the video
sensors.

Audio sensors set-up is composed by 1 (or more)
NIST Mark III 64-channel microphone array, 3 (or more)

T-shaped 4-channel microphone cluster and various table-
top and close-talk microphones.

Video sensors set-up is basically composed by 4 (or
more) fixed cameras. In addition to the fixed cameras,
some sites are equipped with 1 (or more) PTZ camera.

5.1.2. Evaluation metrics

Three metrics are considered for evaluation and compari-
son purposes:

Multiple Object Tracking Precision (MOTP) [mm] This
is the precision of the tracker when it comes to
determining the exact position of a tracked person
in the room. It is the total Euclidian distance error
for matched ground truth-hypothesis pairs over all
frames, averaged by the total number of matches
made.

Multiple Object Tracking Accuracy (MOTA) [%] This
is the accuracy of the tracker when it comes
to keeping correct correspondences over time,
estimating the number of people, recovering tracks,
etc. It is the sum of all errors made by the
tracker, false positives, misses, mismatches, over
all frames, divided by the total number of ground
truth points.

Acoustic Multiple Object Tracking Accuracy (A-MOTA)
[%] This is like the original MOTA metric in which
all mismatch errors are ignored and it is used to
measure tracker performance only for the active
speaker at each point in time for better comparison
with the acoustic person tracking results (where
identity mismatches are not evaluated).

5.2. Audio Person Tracking Results

We have decided to use all the T-clusters available in the
different seminars and only to use the MarkIII data of
those sites where the MarkIII is located in a wall without
a T-cluster (IBM, RESIT and UPC). In general, only
microphone pairs of the same T-cluster or MarkIII array
are considered by the algorithm.

In the experiments where the MarkIII is used, 6 mi-
crophone pairs are selected for GCC-PHAT computa-
tion The pairs selected out of the 64 microphones of
MarkIII are 1-11, 11-21, 21-31, 31-41, 41-51 and 51-61.
Hence, an inter-microphone separation of 20 cm for each
microphone-pair is considered.

In Table 1 individual results for each data set and
average results for both tasks are shown. Notice that
task results are not directly the mean of the individual
results, since the scores are recomputed jointly. The
evaluating system in both tasks is the same and the multi-
person task is only evaluated when only one speaker is
active. In this way mean performances obtained, as it
could be expected, are quite similar. In fact, there is a
fail in the multi-person task, but it is more related with

C. Segura, A. Abad, C. Nadeu, J. Hernando

274



the particular characteristics of each data set, that with the
task indeed. For instance, UPC data is particularly noisy
and present some challenging situations such as coffee
breaks. Hence, we can conclude that acoustic tracking
performs reasonably well in controlled scenarios with one
or few alternative and non-overlapping speakers, while it
shows a considerable decrease in difficult noisy scenarios
with many moving and overlapping speakers.

Table 1. Audio results for both single and multi-person
tracking.

Task MOTP Misses False Positives A-MOTA

ITC data 108mm 8.56% 1.46% 89.98%
UKA data 148mm 15.09% 10.19% 74.72%
Single Person 145mm 14.53% 9.43% 76.04%

IBM data 180mm 17.85% 10.54% 71.61%
RESIT data 150mm 12.96% 6.23% 80.80%
UPC data 139mm 32.34% 28.76% 38.89%
Multi Person 157mm 20.95% 15.05% 64.00%

5.3. Video Person Tracking Results

Seminar sequences from UPC and RESIT have been
evaluated and results are reported in Table 2. Since
our algorithm required empty room information, we
were constrained to only evaluate UPC and RESIT. By
analyzing the results in detail we reached the following
conclusions.

Measures of False Positives (FP) are high due to
the fact our algorithm detected many foreground objects
after the 3D reconstruction due to shadows and other
lighting artifacts. Moreover, MOTA is related with
the FP score thus dropping as FP increases. Further
research to avoid such problems include an improvement
of the Kalman filtering and association rules. Since
our tracking strategy relies on the 3D reconstruction,
rooms with a reduced common volume seen by a number
of cameras (typically less N -1 cameras) produce less
accurate results. Other reconstruction schemes more
accommodated to different camera placement scenarios
are under research to generate reliable volumes even if a
reduced number of cameras is viewing a given part of the
room.

Table 2. Video results for the multiperson tracking.

Task MOTP Misses False Pos. Mism. MOTA

RESIT data 205mm 26.67% 74.62% 2.18% -3.47%
UPC data 188mm 16.92% 23.56% 5.85% 53.67%
Multi Person 195mm 21.24% 46.16% 4.22% 28.35%

5.4. Multimodal Person Tracking Results

Only seminar sequences from RESIT and UPC have been
evaluated due to the constrains of the Video tracking
system mentioned above. For the Multimodal Person
Tracking task, two different scorings under two different
conditions are defined. For the condition A, the scoring

shows the ability to track the active speaker at the time
segments that he is speaking, while under the condition B
the scoring measures the ability to track all the persons in
the room during all the seminar.

The results are reported in Tables 3 and 4 for
each condition. It can be seen that the results are
very similar to those of the Video Person tracking task.
This observation suggests that the multimodal algorithm
is mainly influenced by the performance of the video
tracking system.

Table 3. Multimodal results for Condition A.
Task MOTP Misses False Pos. Mism. A-MOTA

RESIT data 143mm 52.66% 7.14% 3.92% 40.20%
UPC data 101mm 29.48% 25.28% 6.35% 45.24%
Cond. A 118mm 41.18% 16.13% 5.12% 42.70%

Table 4. Multimodal results for Condition B.
Task MOTP Misses False Pos. Mism. MOTA

RESIT data 201mm 26.43% 74.47% 2.20% -3.10%
UPC data 190mm 17.95% 24.61% 5.98% 51.46%
Cond. B 195mm 21.71% 46.71% 4.31% 27.28%

6. CONCLUSIONS

In this paper we have presented the audio, video
and audio-video Person Tracking systems developed by
the UPC.Novelties proposed in the three systems have
been specially designed to add robustness to scenario
and environment variabilities. Results obtained in the
CLEAR evaluation campaign show that the audio tracker
performs reasonably well in situations with few non-
overlapping speakers, while it shows a considerable
loss of performance in some challenging and noisy
situations that must be addressed. Improvement of the
Kalman filtering and association rules are also expected to
enhance the video system. Finally, the multimodal audio-
video system shows a high dependence on the video
results caused by the fusion procedure. Thus, future
efforts will be devoted to develop new fusion strategies
at a higher level.
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