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ABSTRACT

In this paper we present a person identification system
based on a combination of acoustic features and 2D
face images. We address the modality integration
issue on the example of a smart room environment.
In order to improve the results of the individual
modalities, the audio and video classifiers are integrated
after a set of normalization and fusion techniques.
First we introduce the monomodal acoustic and video
identification approaches and then we present the use
of combined input speech and face images for person
identification. The various sensory modalities, speech and
faces, are processed both individually and jointly. The
result obtained in the CLEAR’06 Evaluation Campaign
shows that the performance of the multimodal approach
results in improved performance in the identification of
the participants.

1. INTRODUCTION

Person identification consists in determining the identity
of a person from a data segment, such as a speech,
video segment, etc. Currently, there is a high interest
in developing person identification applications in the
framework of smart room environments. In a smart room,
the typical situation is to have one or more cameras
and several microphones. Perceptually aware interfaces
can gather relevant information to recognize, model and
interpret human activity, behaviour and actions. Such
applications face an assortment of problems such a
mismatched training and testing conditions or the limited
amount of training data. In this work we present
the audio, video and multimodal person identification
techniques and the obtained results in the CLEAR’06
Evaluation Campaign inside the CHIL (Computers in the
human interaction loop) project [1]. The CLEAR’06
Person Identification evaluation is a closed-set task, that
is, all the possible speakers are known. Matched training
and testing conditions and far-field data acquisition are
assumed, as well as no a priori knowledge about room
environment.

For acoustic speaker identification, the speech
signals are parameterized using the Frequency Filtering
(FF) [2] over the filter-bank energies, which is both

computationally efficient and robust against noise. Next,
in order to model the probability distribution of the
parameters generated by each speaker, Gaussian Mixture
Models (GMM) [3] with diagonal covariance are used.

In the case of visual identification, an appearance-
based technique is used due to the low quality of
the images. Face images of the same individual are
gathered into groups. Frontal images within a group are
jointly compared to the models for identification. These
models are composed of several images representative
of the individual. The joint recognition enhances the
performance of a face recognition algorithm applied on
single images. Individual decisions are based on a
PCA [4] approach given that the variability of the users’
appearance is assumed to be low and so are the lighting
variations.

Multimodal recognition involves the combination of
two or more human traits like voice, face, fingerprints,
iris, hand geometry, etc. to achieve better performance
than using monomodal recognition [5], [6]. In this work,
a multimodal score fusion technique, Matcher Weighting
with equalized scores, has been used. This technique
has obtained an improvement for the correct identifica-
tion rate on the closed-set 15/30 seconds training and
1/5/10/20 seconds testing conditions on the CLEAR’06
Evaluation task.

This paper is organized as follows: In sections 2 and
3 an overview of the audio and video algorithms and
techniques is given. Section 4 presents the technique for
multimodal fusion. Section 5 describes the evaluation
scenario and the experimental results. Finally, section 6
is devoted to provide conclusions.

2. ACOUSTIC PERSON IDENTIFICATION

The speaker identification (SI) task consists in determin-
ing the identity of the speaker of a speech segment. In this
task it is usually assumed that all the possible speakers are
known. For this evaluation, recordings from 26 speakers
using one microphone of an array have been provided.
The first stage of current speaker recognition systems is a
segmentation of the speech signal into regular segments.
The speech signal is divided into frames of 30 ms at a
rate of 10 ms. From each segment a vector of parameters
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that characterizes the segment is calculated. In this work
we have used the Frequency Filtering (FF) parameters [2].
These parameters are calculated as the widely used Mel-
Frequency Cepstral Coefficients (MFFC) [7] but replac-
ing the final Discrete Cosine Transform of the logarithmic
filter-bank energies of the speech frame with the follow-
ing filter:

H(z) = z − z−1 (1)

These features have several interesting characteristics:
they are uncorrelated, computationally simpler than
MFCCs, have frequency meaning and they have generally
shown an equal or better performance than MFCCs in
both speech and speaker recognition. In order to capture
the temporal evolution of the parameters the first and
second time derivatives of the features are generally
appended to the oFF , basic static feature vector. The
so called delta coefficients [8] are computed using the
following regression formula,

∆ot(i) =

∑Θ

θ=1
θ
(

ot+θ(i)− ot−θ(i)
)

2
∑Θ

θ=1
θ2

(2)

where ∆ot(i) is the delta coefficient i at time t

computed in terms of the corresponding static coefficients
ot−Θ to ot+Θ. The same formula is applied to the
delta coefficients with another window size to obtain
acceleration coefficients. For each speaker that the system
has to recognize, a model of the probability density
function of the parameter vectors is estimated. These
models are known as Gaussian Mixture Models (GMM)
[3], which is a weighted sum of Gaussian distributions:

λj =

M
∑

m=1

wmN
(

o, µm,Σm

)

(3)

where λj represents the model of the jth speaker, o is
the vector of parameters being modeled, M is the number
of Gaussian mixtures, wm is the weight of the Gaussian
m, and N is a Gaussian function of mean vector µm and
covariance matrix Σm. The parameters of the models are
estimated from speech samples of the speakers using the
well-known Baum-Welch algorithm.

Given a collection of training vectors, maximum like-
lihood model parameters are estimated using the iterative
expectation-maximization (EM) algorithm. Twenty iter-
ations are computed to estimate the client model. In the
testing phase of a speaker identification system a set of
parameter O = {oi} is computed from the testing speech
signal. Next, the likelihood that each client model per-
forms from the vector O is calculated and the speaker
showing the largest likelihood is chosen,

s = argmax
j

{

L
(

O|λj

)}

(4)

where s is the recognized speaker and L
(

O|λj

)

is the
likelihood that the vector O was generated by the speaker
of the model λj .

3. VIDEO PERSON IDENTIFICATION

In this section, the Visual Person ID task is presented.
We have developed for this task a technique for face
recognition in smart environments. The technique takes
advantage of the continuous monitoring of the scenario
and combines the information of several images to
perform the speaker recognition. Recognition is stand-
alone, taking detection and tracking for granted. That
is, the system is semi-automatic. Appearance based face
recognition techniques are used given that the scenario
does not ensure high quality images. As the visual
identification evaluation is a close-set identification task,
models for all individuals in the database are created
off-line using two sets of video segments: the first one
consists on one segment of 15 s per each individual in the
database, while the second one consists on one segment
of 30 s per individual.

The proposed system works with groups of face
images of the same individual. For each test segment, face
images of the same individual are gathered into a group.
Then, for each group, the system compares such images
with the model of the person.

We first describe the procedure for combining the
information provided by a face recognition algorithm
when it is applied to a group of images of the same
person in order to, globally, improve the recognition
results. Let {C}j = {C1, C2, ..., CS} be the different
models or classes stored in the (local or global) model
database. S is the number of individual models. Let
{x}i = {x1, x2, ..., xM} be a group of M probe images
of the same person. Each model Cj contains Nj images,
{y}j

n = {y1

j
, y2

j
, ..., yj

Nj
} where Nj may be different for

every class. We fix a decision threshold Rd so that xi

and yj

n
represent the same person if d(xi, y

j

n
) < Rd. If,

for a given xi the decision function is applied to every
yj

n
∈ Cj , we can define the δ value of xi relative to a

class Cj , δij as

δij = #
{

yi

n
∈ Cj ; d(xi, y

j

n
) < Rd

}

(5)

That is, δij counts the number of times that the face
recognition algorithm matches xi with an element of Cj .
With this information, the δ-Table is built:

C1 C2 . . . Cs

X1 δ11 δ12 . . . δ1S

X2 δ21 δ22 . . . δ1S

...
...

...
. . .

...
XM δM1 δM2 . . . δMS

Table 1. δ-Table
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Relying on the table 1, the proposed technique allows
to determine the class Cj which better represents the set
of probe images {xi}. Further information about this
technique can be found in [9].

In this work, a PCA based approach [4] has been
used. This way, the decision function is the Euclidean
distance between the projections of xi and yj

n on the
subspace spanned by the first eigenvectors of the training
data covariance matrix:

d(xi, y
j

n
) =

∣

∣

∣

∣W T xi −W T yj

n

∣

∣

∣

∣ (6)

The XM2VTS database [10] has been used as training
data for estimating the projection matrix and the first 400
eigenvectors have been preserved. Due to the images
being recorded continuously using the corner cameras,
face images can not be ensured to be all frontal. Mixing
frontal and non-frontal faces in the same models can be
quite a problem for face recognition systems. To avoid
this situation, eye coordinates are used to determine the
face pose for each image. Only frontal faces are used
for identification. Note that, in our system, models per
each person have been automatically generated, without
human intervention. All images for a given individual
in the training intervals are candidates to form part of
the model. Candidate face bounding boxes are projected
on the subspace spanned by the first eigenvectors of the
training data covariance matrix WT. The resulting vector
is added to the model only if different enough from the
vectors already present in the model.

4. MULTIMODAL PERSON IDENTIFICATION

In a multimodal biometric system that uses several
characteristics, fusion is possible at three different levels:
feature extraction level, matching score level or decision
level. Fusion at the feature extraction level combines
different biometric features in the recognition process,
while decision level fusion performs logical operations
upon the monomodal system decisions to reach a final
resolution. Score level fusion matches the individual
scores of different recognition systems to obtain a
multimodal score. Fusion at the matching score level is
usually preferred by most of the systems.

Matching score level fusion is a two-step process:
normalization and fusion itself [11], [12], [13], [14].
Since monomodal scores are usually non-homogeneous,
the normalization process transforms the different scores
of each monomodal system into a comparable range of
values. One conventional affine normalization technique
is z-score, that transforms the scores into a distribution
with zero mean and unitary variance [12], [14].

After normalization, the converted scores are com-
bined in the fusion process in order to obtain a single
multimodal score. Product and sum are the most straight-
forward fusion methods. Other fusion methods are min-
score and max-score that choose the minimum and the

maximum of the monomodal scores as the multimodal
score.

4.1. Normalization and Fusion Techniques

Scores must be normalized before being fused. One of
the most conventional normalization methods is z-score
(ZS), which normalizes the global mean and variance of
the scores of a monomodal biometric. Denoting a raw
matching score as a from the set A of all the original
monomodal biometric scores, the z-score normalized
biometric xzs is calculated according to Eq. 7,

xzs =
a− µ(A)

θ(A)
(7)

where µ(A) is the statistical mean of A and θ(A) is
the standard deviation.

Histogram equalization (HE) is a non linear transfor-
mation whose purpose is to equalize the variances of two
monomodal biometrics in order to reduce the non lin-
ear effects typically introduced by speech systems. The
HE technique matches the histogram obtained from the
speaker verification scores and the histogram obtained
from the face identification scores, both evaluated over
the training data. The designed equalization takes as a ref-
erence the histogram of the scores with the best accuracy,
which can be expected to have lower separate variances,
in order to obtain a bigger variance reduction.

In Matcher Weighting (MW) fusion each monomodal
score is weighted by a factor proportional to the
recognition rate, so that the weights for more accurate
matchers are higher than those of less accurate matchers.
When using the Identification Error Rates (IER) the
weighting factor for every biometric is proportional to the
inverse of its IER. Denoting wm and em the weigthing
factor and the IER for the mth biometric xm and M the
number of biometrics, the fused score u is expressed as

u =

M
∑

m=1

wmxm (8)

where

wm =
1

em

∑M

m=1
1

em

(9)

Before carrying out the fusion process, histogram
equalization is applied over all the previously obtained
monomodal scores. Since the best recognition results
have been achieved in the acoustic recognition experi-
ments, the histogram of the voice scores has been taken as
a reference in the histogram equalization. After the equal-
ization process, the weighting factors for both acoustic
and face scores are calculated by using the corresponding
Identification Error Rates, as in Eq. 9. Z-score normal-
ization is also applied, and final fused scores are obtained
by using Eq. 8.
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5. EXPERIMENTS AND DISCUSSION

5.1. Experimental set-up

A set of audiovisual recordings of seminars and of highly-
interactive small working-group seminars have been used.
These recordings were collected by the CHIL consortium
for the CLEAR 06 Evaluation. The recordings were done
according to the "CHIL Room Setup" specification [1].
A complete description of the different recordings can be
found in [15]. The figure 1 depicts a brief description of
the UPC smart-room sensors and space conditions.

Data segments are short video sequences and
matching far-field audio recordings taken from the above
seminars. In order to evaluate how the duration of the
training signals affects the performance of the system
two training durations have been considered: 15 and 30
seconds. Test segments of different durations (1, 2, 5, 10
and 20 seconds) have been used during the algorithm
development and testing phases. A total of 26 personal
identities have been used in the recognition experiments.

Number of segments
Segment Duration Development Evaluation

1 sec 390 613

2 sec 182 0

5 sec 78 411

20 sec 26 178

Table 2. Number of segments for each test condition

Each seminar has one audio signal from the
microphone number 4 of the Mark III array. Each audio
signal has been divided into segments which contain
information of a unique speaker. These segments have
been merged to form the final testing segments of 1, 5, 10
and 20 seconds (see Table 2) and training segments of
15 and 30 seconds. Video is recorded in compressed
JPEG format, with different frame-rates and resolutions
for the various recordings. Far-field conditions have been
used for both modalities, i.e. corner cameras for video
and Mark III microphone array for audio. In the audio
task only one array microphone has been considered for
both development and testing phases. In the video task,
we have four fixed position cameras that are continuously
monitoring the scene. All frames in the 1/5/10/20 seconds
segments and all synchronous camera views can be used
and the information can be fused to find the identity of
the concerned person. To find the faces to be identified, a
set of labels is available with the position of the bounding
box for each person’s face in the scene. These labels are
provided each 1s. The face bounding boxes are linearly
interpolated to estimate their position in intermediate
frames. To help this process, an extra set of labels
is provided, giving the position of both eyes of each
individual each 200 ms. The metric used to benchmark
the quality of the algorithms is the percentage of correctly
recognized people from test segments.

Fig. 1. The UPC smart room setup

5.2. Results

In this section we summarize the results for the evaluation
of different modalities and the result improvement with
the multimodal technique. Table 3 shows the correct
identification rate for both audio and video modalities
and the fusion identification rate obtained depending on
the length of the used test files. Some improvements
have been performed on the system since the CLEAR
Evaluation, leading to better results than the ones
presented in that. Related to acoustic identification task,
it can be seen that the results, in general, are better as
the segments length increases. Table 3 reports that for
the different test segment lengths the recognition rate
increases when more data is used to test the speaker
models. Overall, using the 30 seconds training segments,
an improvement of up to 6% in the recognition rate
is obtained with respect to the case where 15 seconds
segments are used. For the face identification evaluation,
in general, these results show a low performance of the
system. Results for the training set B (using a segment
of 30 sec. to generate the models) show only a slight
increase of performance with respect to training set A.
It can also be seen that the results improve slowly as
the segments length increases. The reasons for this
low performance are manifold: First of all, the system
uses only frontal faces to generate the models and for
recognition. However, most of the face views found in
the recordings are non frontal. Another reason for the
low percentage of correctly identified persons is the low
quality of the images. The need to cover all the space in
the room with four cameras results in small images, were
the person’s faces are tiny. In the worst cases, face sizes
are only 13x13 pixels.

The determination of the weighting factors for the
multimodal fusion has been done by using the training
signals of 30 seconds as a development set. The first
15 seconds have been used for training and the other
15 seconds for testing. The recognition results obtained
in the evaluation for multimodal identification can also
be seen in Table 3. Fusion results of both systems are
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Train A Train B
Duration Segments Speech Video Fusion Speech Video Fusion

1 613 75.0 % 20.2 % 77.3 % 84.0 % 19.6 % 87.8 %

5 411 89.3 % 21.4 % 92.0 % 97.1 % 22.9 % 97.3 %

10 289 88.2 % 22.5 % 93.4 % 97.6 % 25.6 % 98.6 %

20 178 92.1 % 23.6 % 97.7 % 98.8 % 27.0 % 100.0 %

Table 3. Percentage of correct identification for both audio and video unimodal modalities and multimodal fusion. The
first column shows the duration of test segments in seconds. The second one shows the number of tested segments. Train
A and B are the training sets of 15 seconds and 30 respectively

also shown for the different lengths. Fusion correct
identification rates are higher than the monomodal rates.
The obtained fusion results outperform those obtained
with both monomodal systems.

6. CONCLUSIONS

In this paper we have described two techniques for
visual and acoustic person identification in smart room
environments. A Gaussian Mixture Model of the
distribution of the Frequency Filtering coefficients has
been used to perform speaker recognition. For video,
an approach based on joint identification over groups of
images of a same individual using a PCA approach has
been followed.

For the acoustic identification task, the results
show that the presented approach is well adapted to
the conditions of the experiments. For the visual
identification task, the low quality of the images
results in a low performance of the system. In
this case, results suggest that identification should be
performed combining more features other than frontal
face bounding-boxes. To improve the obtained results,
a multimodal score fusion technique has been used.
Matcher Weighting with histogram equalized scores is
applied to the scores of the two monomodal tasks.
The results show that this technique can provide an
improvement of the recognition rate in all train/test
conditions.
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