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ABSTRACT

Speech recognition has been traditionally associated to continuous
random variables. The most successful models have been the
HMM with mixture of Gaussians in the states to generate/capture
observations. In this work we show how the graphical models
can be used to extract the joint information of more than two
features, which is not modeled with full covariance matrices.
This is possible if we previously quantize the speech features
to a small number of levels and work with discrete random
variables. It is shown a method to estimate a constrained
number of parents subset of the directed acyclic graph based
model framework. Some experimental results are obtained with
this method compared to baseline systems of full and diagonal
covariance matrices. Additionally, it is shown that it is possible
to improve the information of the discrete random variable with
qualitative features, such us voicing class or pitch information.

1. INTRODUCTION

The modeling of discrete variable probability distributions is a very
interesting problem specially when dealing with high dimensional
variables and all their complex interactions [1]. Nowadays, it is
a very active field of research in the scope of pattern recognition,
machine learning and intelligent systems.

In this paper we propose the use of the graphical model
approach to discover underlying dependency structures in the
process of generation of observations in the states of the HMM
(Hidden Markov Model). Usually the joint distribution of the
random feature vector which are the observations of a HMM
are modeled to follow a GMM (Gaussian Mixture Model) with
diagonal covariance matrix. When more accuracy is required
and enough training data are available the covariance matrices
are assumed to be not diagonal. In this case, the most complex
relationship considered between components of the vector is a pair
of components.

In this work it is proposed to quantize the components
of the speech feature vector. The resulting quantized random
vector can be described now with a disc rete random variable
joint distribution. The techniques proposed in the paper try
to approximate the joint distribution of all the components by
taking approximations. It will be shown that for a certain level
of complexity, a good approximation is given by a factorization
described by a directed acyclic graph with a constrained number of
parents per node.

Many authors have previously contributed to this line of
research from different areas, [2], but the application of these tools
in acoustic modeling is limited. There have been applications of
graphical models or Bayesian networks applied as an alternative to
the HMM independence assumption, to build language models or
spoken automatic dialog systems. These have been more natural
fields to develop techniques based on discrete probabilities since,
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stochastic approaches to language modeling and dialog systems
use discrete variables referring to words or, dialog acts over limited
size sets, such us vocabularies. These kind of applications suit
perfectly the graphical model ability to exploit the potential of
intricate hidden dependencies among large number of variables.

This paper is organized as follows. In Section 1 there is
an introduction. In Section 2 the quantization of the speech is
presented. In Section 3 the factorization is described. In Section
4, the parameter estimation is derived. Experimental results are
shown in Section 5 and finally conclusions are in Section 6.

2. QUANTIZED SPEECH FEATURES

Most of today’s systems for speech recognition are based on
statistical approaches for modeling the process of emission of
observations in the HMM. From the statistical point of view the
speech signal can be considered a very complex process. Not
only the non-stationary nature of the signal but also the variability
of observations or measurements we can get have a wide range
across speakers, environments, or even for a same individual.
The exact modeling of all of these sources of uncertainty in
a brute force approach is not affordable since it would require
astronomic sizes of models, training data and computing time. It is
important to build affordable systems to provide mechanisms able
of making approximations and generalize the knowledge. In this
work discrete variables are used to model the speech signal, so that
we are able to learn joint distributions of the speech features.

In order to perform the quantization process, a very simple
process is proposed for this work. First we take the complete
training corpus and, after extracting all the feature vectors,
evaluate some simple statistics as the histogram. Then, we find
a number of areas with an approximate probability mass, same
percentile. The limits between these areas will serve to build
the quantizer. This process can be seen equivalent to construct
a histogram equalization transformation function with an uniform
target distribution and quantize uniformly. the objective is to build
a quantizer so that each quantized level represents the same amount
of mass of probability in the input signal.

We should note that the process here described for building the
quantizer is simple and more optimum solutions can be proposed,
since once it has been obtained from the training set it remains
unaltered for all the experiments. There also exist the potential
future possibility of incorporating a real time implementation of
a histogram equalization system, which can be interesting under
mismatch of signal and models because of different training and
testing conditions. In that case the histogram could be estimated
based on a temporal window around the current feature vector.

3. FACTORIZED PROBABILITY DENSITY FUNCTIONS

To define the distribution associated in general to a D dimensional
random vector x = (x1, . . . , xd, . . . , xD), where each component
of the vector zd is a discrete variable with outcomes xd ∈
{1, . . . , M}, where M is the number of levels after the
quantization and D is the dimension of the feature space. The joint

— 7 —

V Jornadas en Tecnología del Habla



distribution can be expressed mathematically in the following way,
without loss of generality:

p(x) = p(x1)

DY
d=2

p(xd|x1, ..., xd−1), (1)

where we apply the Bayes theorem recursively, and about the
notation p(·) is used for density function and P (·) stands for
probability of event.

When the size of the feature vectors grows, the joint model
is intractable, since we would need to estimate |Θ| = MD − 1
parameters. The naive approximation consists on ignoring all the
dependencies in the general term of the previous expression.

The objective in the graphical model approach is to find a
way of describing the interactions and independencies between the
variables of a probabilistic model, and represent as much useful
information from data into models as possible. This information
can be conveniently represented in the form of graphs [2, 1].

The pdf of interest for us is, as we have noted before, is the pdf
of the generic probabilistic process in the state of a HMM. Also it
can be a component in a mixture for each state, instead of a simple
pdf. The exact pdf to model the observations or feature vectors is
the joint pdf (1), but, as we have said, in most cases is intractable.

In [3] was proposed a method for storaging pdfs based on a
convenient “factorization” of the exact pdf. The process consisted
on the selection of an appropriate order for the index of the
variables, the factorization as in (1) following this order and the
approximation of the conditioned distributions by more simpler
ones. In [3] the number of dependencies of each variable did not
exceed one.

The combination of the order and the approximations to
factorize a joint pdf can be explained with a DAG (Directed
Acyclic Graph) [2, 1]. The probability structure described by the
graph is also called Bayesian Network. To build a a factorization
model, each variable in the model xd is associated to a node in the
graph v, therefore the size of the graph is V = D. The pdf given
by a graph can be expressed as:

p(x) �
VY

v=1

p(xv|π(v)), (2)

where the expression π(v) denotes the dependencies associated to
node v, which are the set of parent of the node v in the graph. The
naive Bayes models are the case of π(·) = ∅ for all the variables.

3.1. Constrained order dependency models

For a given node, the number parent nodes defines the
dependencies of the variable with respect to other variables in
the graph. If this number of dependencies is high, the number
of parameters in the model is large and more data are necessary
to estimate accurately those parameters. The kind of model we
propose is a subset in the factorizations provided by the directed
acyclic graphs, where the complexity of the target factorization is
controlled as a parameter of the model. The objective is to find the
best graph so that the number of parameters remains low and the
approximation to the joint distribution is good enough and keeps
most of the information.

The proposed approach, the Constrained Directed Acyclic
Graph (CDAG), is a DAG with a limited number of parents. The
order r is the maximum number of parents in the graph.

As a first approach we can express the model pdf of a
CDAG(r) as follows:

p(x) �
VY

v=1

p(xv|π(v)) =
VY

v=1

p(xv|π1(v), . . . , πr(v)), (3)

where π1(v) is the first component of the parent set (of size r) for
the node v. We have to note that if the order the model, r, is set
to zero, then we have the naive Bayes model, CDAG(0), and if
the order is set to one, then we have the [3] tree model, CDAG(1).
For simplicity in the notation we are going to express the model
probability and estimate the parameters for an order r = 2, but the
method is also applicable to larger orders.

We propose the adjacency matrix of the graph, A, to establish a
more convenient notation. The term p(xv|π1(v), π2(v)) for r = 2
in (3), can be expressed as:

p(xv|π1(v), π2(v)) =
Y
v′

Y
v′′

[p(xv|xv′ , xv′′)](av′,v·av′′,v)
, (4)

where av′,v is a component of adjacency matrix which is equal to
one if the node v′ is a parent of node v.

3.2. CDAG model likelihood

In order to express the model probability using the adjacency
matrix notation, we have to define an indicator vector b, with only
one element equal to one, which is the index of the node without
parents. The value of the components of b can be expressed as:

bv =

(
1 if

PV

v′=1 av′,v = 0,

0 cc.
(5)

The expression (3) can be written using the adjacency matrix, A,
and the vector b as follows:

p(x) �
Y
v

[p(xv)]bv ·
Y
v′

Y
v′′

[p(xv|xv′ , xv′′)](av′,v ·av′′,v) (6)

where if av′,v and av′′,v are equal to one, the pair of edges
(v′, v) and (v′′, v) are in the graph, and the factor p(xv|xv′ , xv′′)
contributes to the product .

In order to achieve a more compact notation and simpler
estimation derivation, we augment the information represented in
the adjacency matrix to a matrix R = A + b · I. Introducing the
augmented matrix notation, the expression (6) can be now written
as:

p(x) �
Y
v

Y
v′

Y
v′′

[p(xv|xv′ , xv′′)](rv′,v
·r

v′′,v
)
, (7)

where this representation is also more compact because we
consider the special cases:

p(xv|xv′ , xv′′) =

8><
>:

p(xv) v = v′, v = v′′

p(xv|xv′) v = v′′

p(xv|xv′′) v = v′

p(xv|xv′ , xv′′) cc

. (8)

We can express the previous expression (7) as:

p(x) � (9)Y
v,v′,v′′

Y
m′,m′′

[p(xv|xv′=m′,xv′′=m′′)]
(r

v′,v
r

v′′,v
)(δ

x
v′ ,m′ δ

x
v′′ ,m′′ )

,

In the previous expression, we can identify the distributions in the
factors as Multinomials:

xv|xv′=m′,xv′′=m′′ ∼ MultM (1,pv,v′,v′′,m′,m′′). (10)

where pv,v′,v′′,m′,m′′ is the prototype vector, i.e. the histogram
which gives us the probability of the M possible values of the
conditioned variable. The components of the prototype vector can
be expressed as:

pv,v′,v′′,m,m′,m′′ = P (xv = m|xv′ = m
′
, xv′′ = m

′′) (11)
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Then we can express the conditioned variable distribution as:

p(xv|xv′ = m
′
, xv′′ = m

′′
,P) =

Y
m

[pv,v′,v′′,m,m′,m′′ ]δxv,m ,

(12)
with the constraint

PM

m=1 pv,v′,v′′,m,m′,m′′ = 1 for all
v, v′, v′′ = 1, . . . , V and m′, m′′ = 1, . . . , M .

For a set of parameters Θ = (P, R), the log likelihood
function for a training set, X = {x1, . . . ,xn} is:

L(Θ;X) =
X

n

X
v,v′,v′′

X
m,m′,m′′

(rv′,vrv′′,v)×

× `δxnv,mδxnv′ ,m′δxnv′′ ,m′′

´ · log pv,v′,v′′,m,m′,m′′ (13)

4. CDAG PARAMETER ESTIMATION

In order to estimate the optimum set of parameters to maximize
the log likelihood function we have to solve the following
optimization:

{P̂, R̂} = arg max
P,R

L(P,R;X), (14)

subject to
PM

m=1 pv,v′,v′′,m,m′,m′′ for all v, v′, v′′ = 1, . . . , V

and m′, m′′ = 1, . . . , M , and subject to R ∈CDAG(2).
It is possible to show that the optimum parameter subset P̂,

can be solved independently of the topology of the graph as:

p̂v,v′,v′′,m,m′,m′′ =

P
n

δxv ,mδxv′ ,m′δxv′′ ,m′′P
n

δxv′ ,m′δxv′′ ,m′′

. (15)

where in the numerator we have the number of feature vector
examples in the training data whose v component is equal to the
value m, the component v′ is equal to m′ and the component v′′

is equal to m′′. The numerator can be interpreted in this sense
too, and together we can see that the parameter p̂v,v′,v′′,m,m′,m′′

estimates the probability p̂(xv = m|xv′ = m′, xv′′ = m′′).
The optimum set of parameters R̂, provides the edge set and

the graph will be fully characterized. Once we have found the set
of parameters P̂, we can obtain with a convenient manipulation an
optimization similar to [3]:

R̂ = arg max
R

X
v,v′,v′′

(rv′,vrv′′,v)Î(xv||xv′ , xv′′), (16)

subject to R ∈CDAG(2). Where, with the notation
Î(xv||xv′ , xv′′) we refer to the mutual information:

Î(xv||xv′ , xv′′) =X
∀xv ,xv′ ,xv′′

p̂(xv, xv′ , xv′′) log
p̂(xv, xv′ , xv′′)

p̂(xv)p̂(xv′ , xv′′)
, (17)

which is also the Kullback-Leibler divergence between the
distributions p̂(xv, xv′ , xv′′) and p̂(xv) · p̂(xv′ , xv′′), i.e. joint and
approximated respectively.

It is interesting that as in [3] we obtain the same solutions (15)
and (16) by minimizing the Kullback-Leibler divergence between
the approximate and the exact model D(p(x)||p̂(x)).

4.1. Approximated algorithm for graph building

The exact algorithm to find the best graph from this expression is
a hard problem, but a fast but approximate algorithm to estimate
the best graph is proposed in this paper. The objective is to find an
algorithm to obtain the best graph in terms of maximum likelihood,

Algorithm 1 Approximate optimum graph to obtain a CDAG(2)
Input: Random samples X

Output: The graph R̂ of the class CDAG(2)
1. Initialization
Initiate graph matrix:
R̂ ← 0

Estimate all p̂(xv, xv′ , xv′′)

Calculate all Î(xv||xv′ , xv′′)
Initiate set of non assigned nodes, N :
N ← {x1, . . . , xV }
Order decreasingly all Î(xv||xv′ , xv′′) so that:
Î(xm1,1 ||xm1,2 , xm1,3) > Î(xm2,1 ||xm2,2 , xm2,3) > . . .

2. Search edges
k ← 1
while |N | > 1 do

v ← mk,1, v′ ← mk,2, v′′ ← mk,3

if xv ∈ N then
R′ ← R̂

Add edges (v′, v) and (v′′, v) to R′:
r′v′,v ← 1, r′v′′,v ← 1

if |I −R′| 
= 0 then
r̂v′,v ← 1, r̂v′′,v ← 1
N ← N \xv

end
end
k ← k + 1

end
Assign the last variable xv ∈ N :
r̂v,v ← 1
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Figure 1. DKL vs V for artificially generated data.

which is equivalent to find the set of edges R̂ that maximize
expression (16). This problem is trivial for order r = 0,(the naive
Bayes model), and can be solved exactly in polinomial time for
order r = 1, where we will obtain a special kind of graph, a tree,
which is shown in [3]. For higher orders such us r = 2, the
problem becomes intractable, we can not subdivide the problem
into smaller independent problems and the problem cannot be
solved efficiently by dynamic programming approaches.

The approximate Algorithm 1, can be explained as follows.
First the joint distributions p̂(xv, xv′ , xv′′) and the Kullback
Leibler divergences Î(xv||xv′ , xv′′) have to be calculated in a
initializing phase. Then, the values of the Kullback-Leibler
divergences are ordered and the indices of the variables v, v′

and v′′ are stored in the auxiliary variables m(k, 1), m(k, 2) and
m(k, 3) respectively. The next step is the approximate search of
the edges to construct the matrix R̂ with a maximum value of the
sum of partial Kullback-Leibler divergences for all the edges in the
graph, while keeping the graph acyclic. This is done in a loop by
adding consecutively pairs of edges (v′, v) and (v′′, v) following
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Figure 2. Experimental results for Aurora2, test set a, for moderate noisy conditions. a) clean condition train, b) multi condition train.

the previous descending order. Before adding them to the solution,
it is checked that the addition of both pairs does not form a cycle.
In the last step we have only one variable xv in N . This variable
has no parents, which is marked with bv = 1 or r̂v,v = 1.

There is an operation in the search process which can be
computationally expensive. It is the determinant calculation, to
check if the new graph resulting after the addition of the current
edges is acyclic. More efficient searches can be performed if this
part is substituted by an incremental check of the acycliness.

The estimation process shown here can be incorporated to a
hidden variable structure as a HMM or HMM with mixtures in
the states. The results in the experimental section use an EM
estimation of the parameters which can be derived as in [4], where
is done for Bernouilli mixtures.

There exists an approach [5] to discover conditional
independences or the I-map in data sets. In order to do so, there
is a first step which involves the computation of terms I(xv||xv′)
to construct a preliminary graph, which is an approximation with
respect to the more exact mutual information measures the ones
used in this work. In later passes of that algorithm CI (conditional
independence tests) are performed. The CI test consists in the
computation if the mutual information of two variables xv and xv′ ,
given a cutset C, is above certain threshold. The CI test step is
carried without restrictions of the order of the joint pdfs involved.
Another difference is that our approach is not intended to discover
to true underlying graph with any number of parents in the nodes,
but a constrained order graph.

5. EXPERIMENTS

A preliminary experiment is show in Figure 1. The performance
of the Algorithm 1, compared to the naive Bayes approach, the
Chow tree [3], or the approximations performed by algorithms
similar to [5] (which is referred to Alg. 2) is shown. Since it is an
experiment based on artificial data, we can compute the Kullback-
Leibler divergence of the different models with the exact model,
the joint distribution. We can see that the CDAG(2) model with
Algorithm 1 behaves quite accurately in the experiment.

The proposal in this paper has also been evaluated on the
Aurora 2 task [6] which is a connected digit strings recognizing
task in different noise environments. The feature set are the
extended adv ETSI front-end features [7], and the baseline system
has been trained with HMM word models of 14 states and 3
component Gaussian mixtures for the digits, a 1 state with 6
components model for the inter-word silence unit and a 3 state with
6 components model for the begin-end silence unit. The models
were trained with 20 iterations of the EM algorithm.

In Figure 2 we can see experiments with Aurora corpus.
There are two baseline systems with Gaussian mixtures, but in a
case there are diagonal covariance matrices and in the other full
covariance matrices. Results for the discrete feature vector systems
we obtained. The number of quantization levels was left to M = 5.
We can see in Figure 2 the results obtained for all the discrete
random variable approaches. We also can see that additional WER
reduction can be obtained with the addition of more qualitative
features such us the voicing class or the pith given by the extended
ETSI front-end. The mean WER (word error rate) reduction for the
best case in the test set a for the clean, snr20 to snr05 conditions
(moderate noise) is a 13.5%.

6. CONCLUSIONS

In this work it has been shown a method to model high dimensional
discrete distributions which is based on the assumption of a
model of dependencies with a limited number of them. The
generalization ability of these factorizations had been previously
shown in previous works. We have adapted a previous solution for
a constrained order of one to larger orders. The result has been a
very interesting class of model with a good accuracy, specially in
noise conditions and benefits such us a low transmission rate for
the features which we will continue to enhance in future works.
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