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Abstract

One of the most popular approaches to Automatic Language
Identification (LID) is Parallel Phone Recognition followed
by Language Modeling (Parallel PRLM or PPRLM). This
approach has proved to be very successful in LID. However,
it has two mayor drawbacks: its high computational cost due
to the need to run several phone recognizers on the same test
segment; and the need to train the phone recognizers on
manually transcribed data that may not match closely the type
of speech on which the system will work. In this paper we
present a novel approach for LID that tries to solve these two
problems. It is based on substituting the phonetic recognizers
by an Acoustic Event Recognizer (AER) that can be trained
on untranscribed data and is much faster than the phone
recognizers. Results show that this method, which we call
AERLM, can be much faster than PRLM, although at the cost
of reduced LID precision, and therefore suitable for low-cost
LID.

1. Introduction

Automatic Language Identification is the task of recognizing
the language spoken in a sample of speech. This automation
can be very useful in multicultural environments like airports,
congresses or international meetings. It can act as integrating
part of all those services, both fully automated or not, that are
able to act in different languages, adapting themselves to the
user’s spoken language.

Nowadays it is possible to distinguish two main groups of
techniques for automatic language recognition: a high level
approach (which uses acoustic features and linguistic units)
and an acoustic approach (the algorithms which only use
acoustic features). We can classify the most popular systems
as the following:

acoustic level techniques:

- GMM, Gaussian Mixture Model classification;

- SVM-GLDS, Support Vector Machines with General
Lineal Discriminant Sequence kernel;

high level techniques:

- PPR, parallel phone recognition;

- PRLM, phone recognition followed by language
modeling;

- PPRLM, parallel PRLM;

- Improvements on PPRLM (lattices and SVM).

Most commonly used high level techniques can be
grouped together as phonotactic techniques because they try
to recognize languages based on the phones and sequences of

most frequent phones in a language. This approach has two
major drawbacks. Firstly, all these approaches are based on
the concept of phoneme, a knowledge-based linguistic
concept that is language-dependent and in many cases
difficult to deal with in speech processing. An example of this
difficulty is that in order to train a phoneme recognizer it is
considered a requirement to have a manually phonetically
transcribed database. Secondly, all these phonotactic
approaches rely on phoneme recognizers that are costly in
terms of computation, particularly when several recognizers
in different languages are run in parallel as in PPRLM.

The first drawback is becoming less important with the
increasingly number of transcribed speech corpora in
different languages, as well as with techniques such as PRLM
that don’t require transcribed speech from a language in order
to recognize it. However, the second drawback is becoming
more and more important, particularly when emphasis is
starting to be put not only in obtaining low-error systems, but
also in obtaining low-cost systems [1].

In this paper, we present a modification of PRLM systems
in which the Phonetic Recognizer (PR) is substituted by a
data-driven Acoustic Event Recognizer (AER) to create what
we call an AERLM system (Acoustic Event Recognizer
followed by Language Modeling). In this way, we eliminate
the need for phonetically transcribed data for training, which
allows training the AER on data as close as possible to the
testing (or working) data. Perhaps more importantly, AER is
much faster than a phonetic recognizer, which makes it a
good alternative to PRLM for limited-resource systems like
embedded systems, as well as for a fast-matching stage prior
to a more detailed matching.

The rest of the paper is organized as follows. Section 2
gives a panoramic view of our AERLM system. Section 3
gives more details about the Acoustic Event Segmentation.
Section 4 describes our Acoustic Event Clustering. In section
5 we explain the language modeling and in section 6 our
experiments. Finally, section 7 presents some conclusions as
well as future work.

2. AERLM system

The AERLM technique is based on the same idea of PRLM:
modeling and identifying languages based upon token
sequences detected by a tokenizer. In AERLM, however, the
tokenizer is not a phone recognizer. Our idea is to obtain
transcriptions by an Acoustic Event Segmentation followed
by an Acoustic Event Clustering.

The Acoustic Event Segmentation tries to approximate a
phonetic segmentation. Segments are obtained using the
variations in the spectrogram of speech, while the silence
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segments are removed. A similar technique has been used by
Glass and Zue [2] for speech recognition, and also by Chollet
for language independent speaker recognition [3]. This last
technique was successfully applied in the context of speaker
recognition [4]. This work tries to apply a similar (but even
simpler) technique to the domain of automatic language
identification.

The Acoustic Events obtained are parameterized using 13
MFCC and each segment is represented by a vector obtained
averaging all the vectors of the segment. The parameterized
segments are then used to train a clustering algorithm and to
obtain the transcriptions, given by the sequences of
recognized cluster numbers. In a second step, we model and
recognize each language using statistical information about
the obtained transcriptions, like in the PRLM architecture. In
the literature, we found that Heck and Sankar built a cluster
for speech segmentation [5], and, more recently, clustering
has been used in language recognition to improve the
modeling of co-articulation behavior [6].

3. Acoustic Event Segmentation

The first step in the process is the segmentation of the
utterance into acoustically stable segments that intend to
represent phonemes or stable parts of phonemes. This
segmentation is based on a Spectral Variation Function (SVF)
based on the Euclidean distance between the static MFCCs to
the left and right of the current frame. After this SVF has
been computed the utterance is segmented initially into
segments divided by the maxima of the SVF. After this initial
segmentation is applied, a Voice Activity Detector (VAD)
working on a segmental basis is applied. This VAD is based
on the average energy on the segment and maximum and
minimum durations of speech and silence pulses. After the
VAD is applied all contiguous silence segments are unified
into a single segment and are not considered for the rest of the
processing. For the segments corresponding to speech we
compute the average of the static MFCCs as well as deltas
and double deltas within each segment. Given that the
segmentation procedure is intended to produce spectrally
stable segments it makes sense to summarize the spectral
content of the segment by a single vector (although more
testing would be required to determine whether this option is
the best or it would be better to take the central vector, for
instance). In this way, we expect to reduce the computational
complexity of the system without compromising its
discriminative power.

4. Acoustic Event Clustering

Clusters have been largely used in pattern analysis to
compress data [7]. By using clusters, the feature space is
divided into subspaces, each one represented by a centroid.
The clustering algorithm goal is to substitute each data vector
for its nearest centroid. Data compression is achieved by then
replacing the centroid by its associated token.

Somehow in a similar way, phonetic transcriptors
replace a sequence of data vectors by its associated phoneme.
This work proposes a modification of the phonotactic
language identification problem by replacing the HMM
phoneme models of a phonetic trancriptor with an acoustic
event segmentation followed by a clustering of the segments.

The use of clusters in modeling acoustic events has
several advantages: (i) Reduced computational cost; (ii)
Phonetically labeled data is not needed to train the cluster; and
(i) It is a complementary approach to the phonotactic
language identification approach, therefore fusion of standard
systems and our system is expected to improve performance.

Popular algorithms to solve this problem are k-means or
binary splitting. Nevertheless, during the last years many other
have been introduced [8].

In this paper we propose a data driven algorithm based
on GMM modeling. After the acoustic event segmentation and
the averaging of the MFCCs over each segment, the resulting
average MFCCs from the training corpus are modeled using a
GMM. This GMM is then used to cluster together all the
average MFCC vectors that produce the maximum likelihood
for the same Gaussian of the GMM. In this way, the whole
segment producing the average MFCC vector is substituted by
the Gaussian number. With this approach the number of
tokens produced is the same as the number of Gaussians in the
GMM. For our experiments we used 64, 128 and 512
Gaussians/clusters. .

Depending on the GMM training data, the cluster can be
used to model different acoustic events. We can train the
cluster on a single language (single-language clustering) or
train it using data from different languages (multi-language
clustering).

5. Language modeling

Independent language models are created by obtaining a
transcription of a different training set by means of a nearest-
neighbor with the previously trained cluster. The stored
language model is formed by the frequencies of all the
unigrams, bigrams and trigrams for the given codebook. A
Universal Background Model (UBM) with information of
several languages is also trained following the same
algorithm.

The independent language models are adapted from the
UBM in order to obtain adapted language models by means of
the following formula:

P(c| Ad)=aP(c| AL)+(1-a)(c| AUBM) (1)

where c is a given n-gram, AA is the adapted language model,
AL the independent language model, AUBM the Universal
Model, and a a given constant in the range [0-1].

Finally, test scores are computed for all the modeled
languages using the adapted language model and the UBM .

6. Experiments

In this section we present language recognition results using
as training material the LDC CallFriend database [9] and as
testing database the evaluation data from the 2005 NIST
Language Recognition Evaluation [10]. It is worth noting that
we haven’t made use of any phonetically transcribed data for
these experiments.

This section is organized into 4 sections. The first one
presents the experimental set-up, the second one presents
results with a single clustering system trained on a single
language. Then we build a system similar to a PPRLM system
in which we train a clustering system for each language and
then fuse all of them. In section 6.4 we introduce results
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obtained training the cluster on more than one language and
finally, section 6.5 compares our results with those obtained
by our group in NIST 2005 Language Recognition Evaluation
[10], where a more standard PPRLM system with 6 or 12
phonetic decoders were used.

6.1. Experimental set-up

Our base system has a front-end module that outputs 13
MFCC, A and AA parameters (39), but we only used the first
13 (static) MFCCs in the experiments described in this paper.
Three different GMM base clusters, with 64, 128 and 512
mixtures have been trained for each of the following ten
languages: english, mandarin, spanish, arabic, farsi, german,
hindi, japanese, korean, tamil. For this task we used the
complete LDC CallFriend database [9]. For each clustering,
we processed this corpus to obtain transcriptions of all 12
languages. In a second step we used the transcriptions to train
the UBM and to adapt the independent language models. We
used unigrams, bigrams and trigrams. The testing material
consisted of the samples of 30 seconds of the NIST LRE 2005
test corpus [10]. The selected target languages are: English,
Hindi, Japanese, Korean, Mandarin, Spanish and Tamil.
English, Mandarin and Spanish appear with two dialects. We
applied TNorm to all experiments presented.

6.2. Results for a single AERLM system

For the systems using single language trained clustering, we
obtained an EER around 36%.

In Figure 1 we present the results obtained processing the
target languages with one of the system that seems to work
better: the one using the clustering trained on Japanese.

Is it possible to imagine that the average computed during
the acustic event segmentation and clustering reduces the
amount of information available for discriminating among
languages. An interesting aspect to explore in the future
consists in removing this limitation by not averaging features
over an acoustic event segment.

6.3. Parallel AERLM

The distribution of phonemes across languages may be
different depending of the languages involved. In some cases,
phonemes which are typical in one language may be rare in
another. Therefore a clustering trained on a single language
can introduce a loss of information.
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Figure 1: Results on NIST LRE 2005 per Language for an
AERLM system with AER trained on Japanese.
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Figure 2: Results on NIST LRE 2005, all languages. Parallel
AERLM with AERs using 128 clusters trained for 10 languages.
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For PRLM language recognition systems Hazen proposed
to train a phoneme recognizer on more than one language
[11]. An alternative possibility is to run concurrently many
systems and then fuse results: this is the base idea of PPRLM.
The fusion of the different PRLM systems is typically
obtained by using first a score normalization algorithm, for
example T-Normalization [12], due to the intrinsic difference
between the subsystems.

In our approach we explored both ideas: running many
systems and fusing results (Parallel-AERLM) and training a
cluster on many languages (Multi-language-Cluster-
AERLM).The results obtained with Parallel AERLM are
presented in Figure 2.

By fusing all AERLM systems we have obtained an
absolute performance improvement of 1,5 points in EER
relative to the single AERLM global behaviour.

6.4. Multi-Language AERLM system

A multi-language cluster, which models acoustic events from
all languages, can be trained by using a language independent
GMM. The main advantage of Multi-Language AERLM
systems is that we do not need several language-dependent
AERLM systems, as in the Parallel AERLM approach. So, we
would obtain a computational cost of a tenth of the P-
AERLM.

We explored the possibility to train a clusterig on more
than one language using 64, 128 and 512 clusters. Results
shows that the multilanguage system performance is similar
to any single language AERLM system. Probably because,
although the tokenization is richer, tokens are not
discriminative enough.

6.5. Comparison with PPRLM systems

The main goals of the AERLM system were to improve
the PPRLM system in two ways: firstly by avoiding the need
to use phonetically transcribed speech to train the phonetic
decoders, and secondly, by making language recognition
much faster. In this sense the AERLM system achieved these
goals since we don’t need phonetically transcribed material
any more and the computational cost for performing the NIST
LRE 2005 test is only 80 hours with the 10 AERLMs in
parallel, much less than the 500 hours that would require a
system with 10 PRLM systems in parallel. Moreover,
performance for any single-language AERLM system or the
multi-language AERLM system is only slightly worse than
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the 10 AERLM systems in parallel, and they consume 10
times less processing time. This last option is particularly
adequate for resource-limite systems and also for a fast-
matching module prior to a more detailed matching. In all
cases experiments were run on a Pentium IV system at 2.4
GHz. with 1Gb RAM.

But of course the goal was to do this without significant
degradation in performance. Unfortunately this last condition
has not yet been met. Figure 4 presents results achieved by
our group in 2005 NIST Language Recognition Evaluation
(NIST LRE 2005). In there ATVS1 was a PPRLM system
using 12 phonetic decoders trained on OGI Multi-Language
Telephone Speech Corpus and ATVS2 was similar but with
only 6 phonetic decoders. For 30s test segments results were
between 20 and 22% in terms of EER. Our best AERLM
system so far is still far from this result (31.5% EER), as
presented in Figure 3. For future work we need to fine tune
some parameters of the AERLM systems to try to get better
performance while keeping the computational cost low.

7. Conclusions

We have analyzed the substitution of the phone recognizers in
a PPRLM system by Acoustic Event Recognizers (AER) that
are much faster and can be trained on untranscribed data.
With this substitution, we can build AERLM and Parallel
AERLM systems that are much faster than the corresponding
PRLM and PPRLM systems and have the additional
advantage that they can be trained on untranscribed data, thus
increasing the amount of available training data and allowing
for a better fit between the characteristics of the training and
test (or working) data.

Given the reduced computational cost of the systems
proposed, particularly for a single multi-language AERLM
system, which performs almost as well as the 10-langauge
Parallel AERLM system with 10 times less computational
cost, we can envisage these type of systems as a very useful
alternative to more computational complex systems for
embedded devices or even as a fast-matching stage prior to a
more detailed (and complex) matching where required.
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