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Abstract 
We present new results of our n-gram frequency ranking used 
for language identification. We use a Parallel phone 
recognizer (as in PPRLM), but instead of the language model, 
we create a ranking with the most frequent n-grams. Then we 
compute the distance between the input sentence ranking and 
each language ranking, based on the difference in relative 
positions for each n-gram. The objective of this ranking is to 
model reliably a longer span than PPRLM. This approach 
outperforms PPRLM (15% relative improvement) due to the 
inclusion of 4-gram and 5-gram in the classifier. We will also 
see that the combination of this technique with other sources 
of information (feature vectors in our classifier) is also 
advantageous over PPRLM, showing also a detailed analysis 
of the relevance of these sources and a simple feature 
selection technique to cope with long feature vectors. The test 
database has been significantly increased using cross-fold 
validation, so comparisons are now more reliable.  
Index Terms: Language Identification, n-gram frequency 
ranking, score normalization, feature selection, PPRLM 

1. Introduction 
The most used technique in Language identification (LID) is 
the phone-based approach, like Parallel phone recognition 
followed by language modeling (PPRLM) [1]-[2], which 
classifies languages based on the statistical characteristics of 
the allophone sequences with a very good performance. An 
interesting variant of PPRLM is presented in [5] with several 
proposals: different ways to combine the allophone sequence 
information with the acoustic models, use of durations 
(prosodic information) and a tree-based language model. It is 
remarkable the integration of several sources of information. 
In [7] they compare the performance of a neural network with 
a Gaussian classifier as ours. Another recent line of research 
is the fusion of different sources of information, as in [8] or 
[9], which we also address. 

PPRLM does not model long-span dependencies: with 4-
gram language models results are slightly worse, probably 
due to unreliable estimation. To solve this, we decided to use 
a ranking of occurrences of each n-gram with higher n-grams 
[4], in a similar way to [6] where the ranking is applied to 
written text. Although the information source is very similar 
to PPRLM (frequency of occurrence of n-grams), results are 
clearly better. 

This paper is a continuation of the work done in [3] with 
several information sources and [4]. Section 2 describes the 
system setup and basic techniques. In Sections 3 and 4 the n-
gram ranking technique and new information sources are 
described. In Section 5, results are presented and discussed. 
Finally, conclusions are presented in Section 6. 

2. System description 

2.1. Database 

We use a continuous speech database (Invoca), which 
consists of very spontaneous conversations between 
controllers and pilots. It is a difficult task, noisy and very 
spontaneous, with one big drawback: all speakers are native 
Spanish. So, many of them do not reflect all the phonetic 
variations in English, and they mix Spanish for greetings and 
goodbyes even when the rest of the sentence is in English. 

In total, we had some 9 hours of speech for Spanish (4998 
sentences) and 7 hours for English (3132 sentences). We have 
considered sentences with a minimum of 0.5 sec., and a 
maximum of 10 sec., with an average duration of just 4.5 sec., 
which is another important complication for the LID task. To 
increase the reliability of results we have performed a cross-
fold validation, dividing all the material available in 9 
subsets. In each pass we dedicated: 

 4 blocks for estimating the acoustic models & the 
Gaussian distribution for the LMs and the ranking 

 3 blocks for estimating the language models for 
PPRLM and the n-gram ranking & the Gaussian 
distribution for the acoustic scores and duration 

 1 block for the test-set and parameter fine-tuning 

 1 block for the validation set 
So, results are more reliable because they use 7 times 

more material and are for a validation set with unseen data. 
We checked in [2] that to estimate the Gaussian distribution 
for the LMs we could use the acoustic models training list, as 
this data does not participate in the LM estimation. The same 
applies for the distribution estimation of acoustic scores with 
the LMs training list. 

2.2. General conditions of the experiments 

The system uses a front-end with PLP coefficients derived 
from a mel-scale filter bank (MF-PLP), with 13 coefficients 
including c0 and their first and second-order differentials, 
giving a total of 39 parameters per frame. For the phone 
recognizers, we have used context-independent continuous 
HMM models. For Spanish, we have considered 49 different 
allophones and, for English, 61 different allophones. All 
models use 10 Gaussians densities per state per stream. 

2.3. Brief description of PPRLM 

The main objective of PPRLM (Parallel Phone Recognition 
Language Modeling) is to model the frequency of occurrence 
of different allophone sequences in each language. This 
system has two stages. First, a phone recognizer takes the 
speech utterance and outputs the sequence of allophones 
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corresponding to it. Then, the sequence of allophones is used 
as input to a language model (LM) module. In recognition, 
the LM module scores the probability that the sequence of 
allophones corresponds to the language. It can use several 
phone recognizers modeled for different languages. 
Interpolated n-gram language models are used to approximate 
the n-gram distribution as the weighted sum of the 
probabilities of the n-grams considered (weights 1, 2, and 

3 for unigram, bigram and trigram, respectively). All 
systems using 4-gram LMs provided worse results [2]. 

2.4. Gaussian classifier for LID 

The general PPRLM approach has a bias problem in the log-
likelihood score for the languages considered, especially 
when the phone recognizers have a different number of units 
(we have 49 units for Spanish and 61 for English). The 
language with fewer units will have higher probabilities in the 
LM score, and so the classifier will tend to select that 
language. To tackle this issue, we proposed in [2] to use a 
Gaussian classifier instead of the usual decision formula 
applied in PPRLM. With all the scores provided by every LM 
in the PPRLM module we prepare a score vector. With all the 
sentences in the training database we estimate a Gaussian 
distribution each language. In recognition, the distance 
between the input vector of LM scores and the Gaussian 
distributions for every language is computed, using a diagonal 
covariance matrix, and the distribution which is closer to the 
input vector is the one selected as identified language.  

One nice feature of a Gaussian classifier is that we can 
increase the number of Gaussians to better model the 
distribution that represents our classes and have a Multiple-
Gaussian classifier. To increase the number of Gaussians we 
followed the classical HMM modeling approaches (Gaussian 
splitting and Lloyd reestimation after each splitting).  

One important conclusion of that work is that, instead of 
absolute values, we need to use differential scores: the 
difference between the score obtained by the LM of the same 
language of the acoustic models considered (Spa-Spa or Eng-
Eng) and the score obtained by the other ‘competing’ 
language(s): SC0 – SC1 and SC3 – SC2 in Figure 1. So, this 
score can be computed both in training and testing. We 
applied it to unigram, bigram and trigram separately, with 6 
features in total that are listed in Table 1. 

Figure 1. PPRLM Scores 

 

Table 1. Differential score vector 

SCO-SC1 for unigram 
SCO-SC1 for bigram Phonemes-SPA 
SCO-SC1 for trigram 
SC3-SC2 for unigram 
SC3-SC2 for bigram Phonemes-ENG 
SC3-SC2 for trigram 

 
We observed that these differential scores are much more 

homogeneous, being the result that the estimated distributions 
exhibit a much smaller overlap with the competing language. 

In a multiple language system the proposal for the 
differential score would be:  

SC current language – Average (SC other languages) 

One problem that has to be solved is how the weights of 
the n-grams 1, 2, and 3 from the basic PPRLM equation 
(1) can be integrated in this approach, as the scores for 
unigram, bigram, and trigram are independent in our vector.  
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We introduce a new contribution: instead of multiplying 
each feature by its weight in the distance measure, it is much 
better to divide the variance of the distribution of each score 
by the corresponding i weight (equation (2)). For low i, 
variances increase and so distances are smoothed (which is 
good for less discriminative features). This smoothing weight 
is quickly adjusted with good results using the test set. 
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3. n-gram Frequency Ranking 

3.1. Description 

We use the same input as PPRLM: the sequence of 
allophones generated by the phone recognizer. As proposed in 
[6], we use all training data to compute the number of 
occurrences of each n-gram (n=1 to 5). We sort those counts, 
and keep only the M most frequent n-grams, which will form 
the ranking for that input language. It is known ([6]) that the 
top n-grams are almost always highly correlated to the 
language. So, we will use this ranking instead of the LM 
module considered in PPRLM (see Figure 1).  

In testing, for each input sentence a ranking is created 
using the same procedure. Then, the distance between the 
input sentence ranking and each ranking is computed. The 
distance measure is the following (we add the difference in 
the ranking position for all n-grams in the input sentence): 

L
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where L is the number of n-grams in the input sentence. If 
an n-gram does not appear in the ranking (meaning that it has 
not appeared in training or it is not in the top n-grams 
selected) it is assigned the worst distance: the ranking size. 
The language identified by the system will be the one with 
the lowest distance. For the Gaussian classifier we now have 
10 features in our vector (unigram to 5-gram in both 
languages).  

In [4] we obtained the following conclusions for this 
technique: optimum ranking sizes range in 3000; it is better to 
have n-gram specific rankings, instead of a global ranking for 
all n-grams which include too many unigrams and bigrams 
which are less discriminative; and rankings should be 
discriminative.  

We wanted to give more relevance in the ranking (higher 
positions) to the items that are actually more specific to the 
identified language, i.e. n-grams that appear a lot for one 
language but appear very little, or never, in the competing 
languages. We propose a variation of tf-idf, which is used for 
topic classification. Given the following normalized values: 

n1’ = occurrences of item i in the current language 
n2’ = occurrences of item i in the competing language (the 

average to extend the metric to multiple languages) 
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The best formula with the same philosophy as tf-idf for 
the final number of occurrences considered for the ranking 
(which we will call n1’’) is (more details in [4]): 

n1’’ = n1’ * (n1’– n2’) / (n1’+ n2’)
2 

which normalizes the values between 1 and -1: 1 meaning 
that the n-gram appears in the current language but not in the 
other competing ones (n2’=0), so it is especially relevant for 
that language; -1 meaning just the opposite (n1’=0), so the n-
gram does not appear in the current language. 

4. Inclusion of several information sources 
We propose the inclusion of acoustic information in two 
complementary ways: the average acoustic score of the 
sentence and the average acoustic score for each phoneme. At 
the same time, phoneme duration generated by the phone 
recognizer can be very different depending on the input 
language, so we can take advantage of that too. For these 
three sources of information we will just add another feature 
vector in our classifier, as we will see in this section. 

4.1. Inclusion of the sentence acoustic score 

First, we will consider the global acoustic score of the 
sentence (phone recognizer score normalized by the number 
of frames). We have a vector with two features: the acoustic 
score obtained in the phone recognizers for each language. 
So, the approach can be easily extended to several languages.  

The acoustic score values were not homogeneous at all, 
and so, the estimated distributions for competing languages 
had a big overlap. Then, we decided to use again the 
“differential scores” idea: we used the difference between the 
phone recognizer score for Spanish and English as feature 
value. To extend this approach to several languages: 

AcScore current language – Average (AcScore other languages) 

4.2. Inclusion of the acoustic score for each phoneme 

We now considered that the acoustic score for each individual 
phoneme could also have a strong variation depending on the 
language. Using our classifier, we modeled the Gaussian 
distribution for the acoustic score of each phoneme.  

For each input sentence we have its corresponding 
sequence of phonemes using the Spanish and English phone 
recognizers. We compute the average score for each phoneme 
appearing in the sentence (averaging the score over all frames 
belonging to that phoneme) obtaining a feature vector with as 
many features as the number of phonemes in the system. 
Obviously, phonemes not appearing in the sentence do not 
contribute to the final score in the classifier. 

Again, the “differential scores” approach is a must, 
because these scores have a strong variability. To normalize, 
for every frame: SC = SCSpanish – SCEnglish, which is added for 
all phoneme frames. This approach is clearly better than 
normalizing using the sentence average score for the 
“competing” language. 

To reduce the size of the feature vector, we grouped some 
allophonic variations and considered 34 different phonemes 
for each language. So, we have a vector of 68 features. This 
vector is obviously too large to have it reliably estimated. In 
this version of our system we decided to apply a feature 
selection algorithm to reduce the dimensionality: we keep the 
n features that maximize the following objective function: 

2
2

2
1
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where 1 and 2 are the mean values for the feature 
considering Spanish and English input sentences respectively, 
and 1 and 2 are the respective covariances. A high value in 
this formula means that the feature is very discriminative. 
There is a very strong correlation among this separation 
measure and the final results in LID. We tested the system 
using 24, 30, and 35 features, keeping 30 features as the 
optimum. To get an idea of the information provided by this 
objective function, in Table 2 we can see the separation which 
is obtained with PPRLM and n-gram ranking for each n-gram 
considered applying equation (4). Discrimination for the 
ranking trigram is very similar to the PPRLM trigram, but 
now we can use 4-grams and 5-grams. The separation for the 
sentence acoustic score is 6.84, whereas for the 30 features of 
the acoustic score for each phoneme it ranges from 3.52 to 
0.54. 

Table 2. Comparison of feature discrimination  

 PPRLM Ranking 
trigram 10.57 10.12 
bigram 8.54 7.12 
4-gram - 6.61 
5-gram - 4.25 
unigram 3.17 2.19 

 
An alternative to this feature selection algorithm is to 

apply LDA to reduce the dimensionality, which is oriented to 
labeled samples, as we have. Unfortunately, results were 
slightly worse. LDA has one advantage: it projects into a 
space of dimension “number of classes -1”, which is 1 in our 
case, so the Gaussian distribution is easily estimated. It would 
probably work better for a multiple class classification. This 
will be explored as future work.  

One reason of the bad results is probably the “missing 
values” problem: we have an original vector with 68 
components corresponding to phonemes, but several of them 
do not appear in a sentence. The easy solution is to substitute 
those missing values by their mean taken from the training 
database, but that implies some loss of information, and the 
projection of the test vector is worse. So, we still have to 
tackle this issue. 

4.3. Inclusion of the duration for each phoneme 

We considered that phoneme duration could also be 
different depending on the input language, so we thought that 
it could be easy to add just another feature vector to our 
Gaussian classifier. So, we modeled the Gaussian distribution 
for the average duration of each phoneme in our system. For 
each input sentence, we computed the average duration for 
each phoneme and the feature vector had as many features as 
the number of phonemes. The problem is that this duration 
produced by the recognizer is quite difficult to normalize. The 
“differential scores” approach that we should apply here 
would be to subtract the average duration for the competing 
language, but, as the phoneme sets are different for each 
language, this subtraction is not possible. We considered two 
normalizations: a) Subtract the average phoneme duration of 
the competing language; b) Subtract the phoneme duration of 
the competing language for the phoneme which had the 
largest part in common with the current one, so it will be the 
most probable “competing” phoneme. (b) was a better option.  

We reduced the feature vector using the same feature 
selection technique as in the previous section, keeping this 
time 22 features as the optimum value.  
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5. LID results 

5.1. Individual features 

When mixing several sources of information differences are 
less evident. So, we will first show in Table 3 the results of 
each source independently. There are several interesting 
conclusions: 

 The n-gram ranking provides a 15.4% relative 
improvement over PPRLM. 

 Phoneme acoustic score is 3% better than the Acoustic 
sentence score. 

 Phoneme duration is the worst discriminative, so we 
still have a normalization problem with the technique. 

Table 3. LID results for individual feature vectors 

PPRLM n-gram  
Ranking 

Sentence 
Acoustic 

Phoneme 
Acoustic 

Phoneme 
Duration 

3.69 3.12 8.14 7.90 24.67 

5.2. Combination of several features 

In Table 4 we can see the results when combining several 
feature vectors and the relative improvements over the 
PPRLM and the Ranking base systems from Table 3. We can 
extract the following comments: 

 Rows 1 & 2: “PPRLM + Phoneme Acoustic” is better 
than “PPRLM + Sentence Acoustic”, as the individual 
results predicted.  

 Row 3: The fusion of PPRLM and duration only 
provides a low improvement, but it could be expected. 

 Row 4 & 8: PPRLM / Ranking + both acoustic scores 
keeps improving the system, so these scores are 
complementary  

 Rows 5-7: The fusion of the Ranking + additional 
features provides similar improvements to PPRLM, a 
bit lower probably because they begin from a much 
better system. 

 Row 9: The fusion of PPRLM and Ranking provides a 
nice improvement. This is even surprising, as they use 
the same information source, the n-grams. 

 Rows 10 & 11: The fusion of PPRLM + Ranking + 
Acoustic scores provides further improvements, which 
shows again that they all provide complementary 
information. 

Table 4. LID results for feature vector combinations  

Feature vectors LID Improv. 
PPRLM 

Improv. 
Ranking 

PPRLM + Sentence Acoustic 3.10 16.0% - 
PPRLM + Phoneme Acoustic 3.08 16.5% - 
PPRLM + Phoneme Duration 3.49 5.4% - 

PPRLM + both Acoustics 3.00 18.7%  
Ranking + Sentence Acoustic 2.78 - 10.9% 
Ranking + Phoneme Acoustic 2.77 - 11.2% 
Ranking + Phoneme Duration 3.07 - 1.6% 

Ranking + both Acoustics 2.63 - 15.7% 
PPRLM + Ranking 2.85 22.8% 8.7% 

PPRLM +Ranking+S. Acoustic 2.66 27.9% 14.7% 
PPRLM+Ranking+both Acoust. 2.54 31.2% 18.6% 

All 2.52 31.7% 19.2% 
 

5.3. Longer span of the ranking technique 

We also checked the relevance of 4-grams and 5-grams in 
LID with this technique. In Table 5 we can see that the LID 
results considering only up to 4-gram or up to trigram are 
worse than using all n-grams, and the trigram ranking has 
similar results as PPRLM. So, we are clearly taking 
advantage of this longer span using this technique. 

Table 5. Independent ranking for each n-gram 

 Best result 
All n-grams 3.12 

Up to 4-gram 3.30 
Up to trigram 3.59 

6. Conclusions 
We have demonstrated that the n-gram Frequency Ranking 
approach can clearly overcome PPRLM thanks to the longer 
span that can be modeled. Even the combination of this 
Ranking with more feature vectors keeps improving the 
results, showing that all the features proposed provide 
complementary information (phoneme duration being the 
worse). The acoustic score for each phoneme is a slightly 
better feature than the sentence acoustic score. 

The measure of separation between pdf distributions 
(Section 4.2) is a good tool to anticipate which features are 
going to be actually discriminative for the LID task. LDA 
provides worse results, probably because of the “missing 
values” problem. 

As future work, we will check these results with a bigger 
and more “standard” database. 
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