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ABSTRACT 

 
This paper describes new acoustic features for 
improving VAD (Voice Activity Detection) when 
dealing with speech mixed with far-field and multi-
speaker speech. Background voices are one of the major 
causes for the degradation of speech recognition 
performance in spoken dialog systems (specially over 
mobile phones). Also, in any audio indexing 
application, to separate the voice of a target speaker 
from other background speakers can be necessary. This 
paper studies three new features to discriminate between 
near-field, far-field and background multi-speakers 
speech: 1) the percentage of frame-by-frame change for 
the best HMM mixture in a HMMs-based VAD; 2) the 
Mahalanobis distance between MFCCs from 
consecutive speech frames, and 3) the maximum auto-
correlation value for each speech frame. Experimental 
results on the Av16.3 speech database for the best 
feature, obtain classification errors below 19% for near-
field vs. far-field speech, and 3.5% for one-speaker vs. 
multi-speaker. 
Index Terms: VAD, far-field speech, multi-speaker 
speech. 

1. INTRODUCCIÓN 
 

This paper addresses the problem found in many 
speech-based applications when speech of the user to be 
recognized is contaminated with background voices 
from other speakers standing still or moving. Far-field 
speech is specially problematic and usual in mobile 
phone scenarios, where the main speaker can be situated 
in open environments surrounded with far-field 
interfering speech from other speakers. In this case, 
VAD systems can detect far-field speech as coming 
from the user increasing the speech recognition error 
rate. Generally, errors caused by background voices 
mainly increase word insertions and substitutions, 
leading to important dialogue misunderstandings.   

In several previous works, similar measures as the 
ones this work considers have been used for 
dereverberation techniques. In [1] for example, authors 

use the idea of reverberation for restoring speech 
degraded by room acoustics using stereo (two 
microphone) measures. To do this, cepstra operations 
are made when observations have nonvanishing spectra. 
Other dereverberation technique, presented in [2], uses 
the pitch as primary analysis feature. That method starts 
estimating pitch and harmonic structure of the speech 
signal to obtain a dereverberation operator. After that, 
this operator is used to enhance the signal through an 
inverse filtering operation. Single channel blind 
dereverberation was proposed in [3] based on auto-
correlation functions of frame-wise time sequences for 
different frequency components. A technique for 
reducing room reverberation using complex cepstral 
deconvolution and the behavior of room impulse 
responses was presented in [4]. Reverberation reduction 
using least square inverse filtering has been also used to 
recover clean speech from reverberant speech. 
Yegnanarayana shows in [5] a method to extract time-
delay between two speech signals collected at two 
microphone locations. The time-delay is estimated using 
short-time spectral information (magnitude, phase or 
both) based on the different behavior of the speech 
spectral features affected by noise and reverberation 
degradations. Finally, Cournapeau shows in [6] a VAD 
based on High Order Statistics to discriminate close and 
far-field talk, enhanced by the auto-correlation of LPC 
residual. 

Nowadays there is an increasing interest on the 
relevance of VAD systems in real applications. New 
VAD techniques are being proposed, see for example 
the work of Ramirez et al. [7] on robust VAD using the 
Kullback-Leibler divergence measure. However, 
although experimental results are usually given for the 
AURORA database, to our knowledge there are no 
similar results for speech in the presence of far-field 
voices. 

In this paper, trying to contribute to the 
improvement of VAD systems in the presence of 
background speech, we present a preliminary analysis 
of new features suitable to classify near-field, far-field 
and multi-speaker speech. We consider simple acoustic 
feature that could be easily and cost-effective integrated 
in state-of-the art VAD.  
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The rest of this paper is organized as follows: the 
speech database and our experimental evaluation 
framework are described in Section 2. Section 3, 4 and 
5 present three different features for far-field and multi-
speaker discrimination together with their 
corresponding evaluation results. Finally, some 
conclusions are given in Section 6. 
 

2. SPEECH DATABASE 
 

The database we used in this work is the Av16.3 
speech database composed of audio-visual data 
recorded in a meeting room context. For this work, only 
the audio data has been considered. This audio has been 
recorded with 16 microphones perfectly synchronized 
and calibrated conveniently. For each recording, there 
are 16 audio WAV files from the two circular 8-
microphone arrays (Fig. 1) sampled at 16 KHz and 
WAV files recorded from lapels also sampled to 16 
KHz. It is specially important to point out that 
overlapped speech has been recorded when there are 
several speakers speaking simultaneously. 

In order to allow for such a broad range of 
research topics, “meeting room context” is defined in a 
wide way. This includes a high variety of situations, 
from “meeting situations” where speakers are seated 
most of the time, to “motion situations” where speakers 
are moving most of the time (Fig.1). Audio files are 
named in function of the speakers characteristics (for 
more details see [8]). These files have been resampled 
down to 8 Khz (for simulating a telephone channel) and 
randomly divided into three sets: training (80%), 
validation (10%) and test (10%). The feature analysis 
has been performed over the training set. 

Figure 1. MA1 and MA2 8-microphone circular array. 
See Speakers Area. This figure has been obtained from 

[8]. 
 

3. PERCENTAGE OF CHANGES FOR THE BEST 
MIXTURE IN A HMM-BASED VAD SYSTEM 

 
This section presents a study about the 

discrimination power between near-field vs. far-field 
speech using as feature the percentage of times the best 
mixture (in a maximum likelihood sense) of a speech 
HMM model in a HMM-based VAD change across a set 
of successive frames. Our VAD system uses two one-
state HMMs (noise and speech models) including 200 
Gaussian mixtures. This high number of components in 
the Gaussian mixture introduces more mixture 
variability producing higher frame-to-frame best 
mixture variability for multispeaker signals. The VAD 

system uses a MFCC vector (generated from a 12 Mel 
filter-bank analysis) formed by the first 8 cepstrum 
coeficients, normalized energy and delta energy. The 
HMMs models have been trained by means of Baum 
Welch re-estimation (ec. 1). 
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where MS is the number of mixture components in 
stream s, cjsm is the weight of the m´th component and 
N( ; ; ) is a multivariate Gaussian with mean vector  
and covariance matrix . 

Initially the best mixture was selected after 
applying its mixture weight but small Gaussian 
variability was found. In order to increase this 
variability, mixtures weights were removed from the 
best mixture computation. In this case, a lot of 
candidates of winner gaussians were obtained when 
processing all frames. The measure we propose is the 
percentage of changes of the best Gaussian along N 
consecutive frames. 

Figures 2 and 3, show the distribution of the 
percentage of changes considering N=100 and N=1000 
frames respectively. Only speech frames are considered 
in this study. The noisy frames are discarded. 

Figure 2. Distribution of the percentage of 
changes considering N=100 frames. 

Figure 3. Distribution of the percentage of changes 
considering N=1000 frames. 

As it is shown in figures 2 and 3, the percentage of 
best mixture changes is higher for speech coming from 
several speakers at the same time. This feature can 
discriminate very well between main speaker and 
multispeakers voices. In this case, the error is lower 
than 26% and 10% for  100 and 1000 frames 
respectively. When the number of frames considered for 
the percentage computation (N) increases from 100 to 
1000 the measure is better estimated and the 

Distribution of the percentage of best mixture changes 
along 100 frames
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discrimination power increases. On the other hand, the 
discrimination power between main speaker and far-
field speaker voices is not good enough. Anyway, it is 
possible to see a higher percentage of changes for far-
field speech. 
 

4.  MAHALANOBIS DISTANCE BETWEEN 
MFCCS 

 
This feature consists of computing the 

Mahalanobis distance between MFCC vectors obtained 
from consecutive speech frames. Every vector contains 
the first 8 MFCC coeficients, normalized energy and 
delta energy. Mahalanobis distance, ec. (2), is used to 
evaluate the similarity between multidimensional 
random variables: 

where S is the covariance matrix of the variable vector 

),...,,( 21 kxxx . The distributions of Mahalanobis 

distance between consecutive frames for the main 
speaker, far-field speaker and multi-speaker speech are 
shown in figure 4. Figure 4 shows the histogram of the 
Mahalanobis distances  between consecutive frames. As 
it is shown, main speaker speech presents lowest 
distance while multi-speaker presents the highest ones. 
At this point, the analysis were extended to groups of N 
frames, considering N=50 and N=500 frames. Again 
only speech frames were considered and noisy frames 
were discarded. In this process, the minimal distance 
along N consecutive frames is computed. Figures 5 and 
6 shows the distributions of the minimal distance. 
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Figure 4. Distribution of Mahalanobis distance 

distributions for main speaker, far-field speaker and 
multi-speaker speech. 

As it is shown in figures 5 and 6, the minimal 
distance  along the N frames is higher for speech 
coming from several speakers at the same time. This 
feature can discriminate very well between main 
speaker and multispeakers voices. In this case, the 
classification error is lower than 24% and 14% for  50 
or 500 frame segments respectively. When the number 
of frames considered for the minimal computation (N) 
increases from 50 to 500 the minimum is better 
estimated and the discrimination power increases. 

The discrimination power between main speaker 
and far-field speaker voices with this feature is better 
compared to the previous feature. In this case, errors are 
lower than 35% and 27% for 50 or 500 frames. Other 
related measures, like the maximum, average, variance 

or kurtosis of the Mahalanobis distance, were also 
tested, but only the minimum distance showed an 
interesting relationship with the voice type. We think 
this is due to the fact that a low minimum distance is 
obtained during stationary speech zones: very 
infrequent in far-field and multi-speaker speech. 

Distribution of minimum Mahalanobis distance along 50 frames
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Figure 5. Distribution of minimum Mahalanobis 

distance considering N=50. 
Distribution of minimum Mahalanobis distance along 500 frames
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Figure 6. Distribution of minimum Mahalanobis 

distance considering N=500. 
 

5. MAXIMUM AUTO-CORRELATION 
OBTAINED WHEN COMPUTING THE PITCH 

 
In this case, the study was focused on the behavior of 
the auto-correlation values when computing the pitch at 
every frame. Considering only voice frames, the 
maximum of auto-correlation in pitch regions is 
considered. Fig. 7 presents the maximum auto-
correlation distributions for main speaker, far-field 
speaker and multispeaker speech. 

Distribution of maximum auto-correlation 
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Figure 7. Distribution of maximum auto-correlation for 

main speaker, far-field speaker and multispeaker. 
Fig 7. shows very different behaviors for the maximum 
auto-correlation value in the three cases, specially for 
auto-correlation values higher than 0.9. There are many 
more frames in the case of the main speaker speech and 
very few in the case of multi-speaker speech. So after 
considering this effect, the percentage of frames (along 
N frames) with a maximum auto-correlation higher than 
0.9 was computed for the three types of speech. Figures 
8 and 9 show the distributions of the percentage of 
maximum auto-correlation values higher than 0.9 for 
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main speaker, far-field speaker and multi-speaker 
speech along 50 and 500 frames. 

Distribution of porcentage of maximum auto-correlation higher than  0.9 along 
50 frames
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Figure 8. Distribution of porcentage of maximum 

auto-correlation higher than 0.9 for main speaker, far-
field speaker and multi-speaker N=50. 

Distribution of porcentage of maximum auto-correlation higher than  0.9 along 500 
frames
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Figure 9. Distribution of porcentage of maximum 

auto-correlation higher than 0.9 for main speaker, far-
field speaker and multi-speaker N=500. 

As it is shown in figures 8 and 9, the percentage along 
the N frames is lower for speech coming from several 
speakers at the same time. This feature can discriminate 
very well between main speaker and multispeakers 
voices. In this case, the error is lower than 15% and 
3.5% for considering 50 or 500 frames respectively. 
When the number of frames considered (N) increases 
from 50 to 500 the percentage is better estimated and 
the discrimination power increases. The discrimination 
power between main speaker and far-field speaker 
voices is better compared to the previous two features. 
In this case, classification errors are lower than 33.5%  
and 19% for 50 and 500 frames respectively. 
 

6.  CONCLUSIONS 
 

This paper presents new successful features for 
improving VAD (Voice Activity Detection) when main 
speaker speech is mixed with far-field and multi-
speaker speech. Generally, these features can be used to 
improve the behavior of any application in which it is 
necessary to discriminate the main speaker speech from 
far-field speech and multi-speaker speech. This study 
has been done with the Av16.3 speech database but the 
audio files have been resampled to 8Khz in order to 
simulate a telephone channel. The first feature proposed 
has been the percentage of changes of the mixture with 
the maximum likelihood, considering a VAD system 
based on HMMs. Results show better performance for 
multi-speaker speech rejection. 

The second one was the Mahalanobis distance 
between the MFCCs of consecutive speech frames. In 
this case, the results were better than previous feature 
ones. Error between main speaker speech and multi-

speaker speech was lower than 24% and 14% for 
considering 50 or 500 frames respectively. On the other 
hand, comparing main speaker speech vs. far-field 
speech, classification error was lower than 35% and 
27% for 50 and 500 frames. 

Finally, the best feature has been the maximum 
auto-correlation value obtained when computing the 
pitch at every frame. This feature can discriminate very 
well between main speaker and multi-speaker voices. 
Although some measures over this maximum has been 
processed, porcentage of frames with a maximum of 
auto-correlacion value higher than 0.9 is the one which 
gets the best results. In this case, the error was lower 
than 15% and 3.5% for considering 50 or 500 frames 
respectively. When comparing main speaker speech and 
far-field speech, classification errors are lower than 
33.5% and 19% for 50 and 500 frames. 

For all the features, when the number of 
consecutive frames considered for feature computation 
increases, the discrimination power increases. It is 
important to remark that a good performance for real 
time applications is obtained for the second and third 
features whose behavior when considering 50 frames is 
very good. 
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