Overview of the Albayzin 2010 Language Recognition Evaluation: database design, evaluation plan and preliminary analysis of results

Luis Javier Rodríguez-Fuentes, Mikel Penagarikano, Amparo Varona, Mireia Díez, Germán Bordel

Software Technologies Working Group (http://gtts.ehu.es) Department of Electricity and Electronics, University of the Basque Country Barrio Sarriena s/n, 48940 Leioa, Spain email: luisjavier.rodriguez@ehu.es

> FALA 2010, Vigo, Spain November 10, 2010



# Outline



- 2 The language detection task
- 3 Test conditions
- 4 Data

#### 6 Organization



- Participation
- CR-30 (mandatory condition)
- Dependence on duration
- Open-set tests
- Performance on noisy speech
- Post-eval activity
- 8 Conclusions



(3)

# Motivation

- To promote collaboration between research groups (specially from Spain and Portugal) interested in automatic language recognition
- To produce speech resources specifically designed for language recognition applications featuring Iberian languages as target languages
- To explore the limits of state-of-the-art technology (and eventually to foster research progress and technological developments) on wide-band speech from TV broadcasts, which are not used in NIST evaluations
- To evaluate performance degradation when dealing with noisy signals



The language detection task

- As for NIST LRE: given a segment of speech and a language of interest (target language), determine whether or not that language is spoken in the segment, based on an automated analysis of the data contained in the segment.
- Trial: audio segment + target language + set of non-target languages
- System output: hard decision + score (maybe LLR)



### Test conditions

#### • Set of trials

- Closed-set tests (C): only trials corresponding to audio segments containing target languages
- Open-set tests (O): all the trials

#### • Background conditions

- Clean speech (C)
- Noisy/Overlapped speech (N)

#### • Nominal duration of audio segments: 30, 10 and 3 seconds

- **Performance measures** (as defined in NIST LRE, using NIST software, see paper for details):
  - $C_{avg}$  ( $P_{target} = 0.5, C_{miss} = C_{fa} = 1$ )
  - $C_{LLR}$
  - DET curves

(4) E (4) E (4) E

# Database features (1)

- KALAKA-2 (includes KALAKA in train and development)
- 6 target languages: Basque, Catalan, English, Galician, Portuguese and Spanish
- Other languages (to allow open-set tests): Arabic, French, German and Romanian
- Audio files: 16 kHz, single channel, 16 bits/sample, PCM (WAV)
- Speech signals extracted from TV broadcast recordings, featuring various dialects, linguistic competence levels, speech modalities and diverse environment conditions
- Disjoint subsets of TV shows posted to train, development and evaluation, as an attempt to guarantee speaker independence
- Size: around 125 hours (distributed in 5 DVD)
  - Train dataset > 82 hours (more than 12 hours per target language)
  - Development dataset > 21 hours
  - Evaluation dataset > 21 hours

# Database features (2)

- Segments for training had no length restrictions: clean (more than 10 hours per target language) and noisy segments (around 2 hours per target language) were provided
- Segments for development and evaluation:
  - enclosed by a certain amount of low-energy frames
  - 3-second subset  $\subset$  10-second subset  $\subset$  30-second subset
  - length tolerance: 3-5, 10-12 and 30-33 seconds (30-35 for noisy segments)
- Size of the development and evaluation datasets:
  - Development: 4950 segments (1458 noisy, 1374 OOS)
  - Evaluation: 4992 segments (1647 noisy, 1320 OOS)

## Evaluation rules (in brief)

- 4 test conditions (CC, CN, OC, ON)  $\times$  3 durations: 12 tracks
- For each test condition: single primary + any number of contrastive systems
- Results in NIST LRE format (text file with one line per trial and 6 fields per line)
- Participants committed to specify whether or not their scores may be interpreted as log-likelihood ratios
- Participants committed to send descriptions of their systems and present them at the Albayzin 2010 LRE Workshop (after this session)
- Systems ranked in each track according to  $C_{avg}$
- Award: system yielding the least  $C_{avg}$  in the CC-30 condition



(4) (3) (4) (4) (4)

# Schedule (as finally executed)

| Evaluation plan released, registration opens (deadline: July 15)                                                         |                                                                                               |                        |                   |  |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------|-------------------|--|
| Train and development data                                                                                               | Train and development data (4 DVD) submitted to registered sites, time for system development |                        |                   |  |
| Evaluation data released, tim                                                                                            | e for processing evaluati                                                                     | on data                |                   |  |
| System results and description                                                                                           | ons submitted to organiza                                                                     | ation, analysis of the | submitted results |  |
| Keyfile and results released, time for preparing final descriptions (deadline: November 2) and<br>workshop presentations |                                                                                               |                        |                   |  |
| Albayzin 2010 LRE Workshop (delivery of the 5 <sup>th</sup> DVD: evaluation data and documentation)                      |                                                                                               |                        |                   |  |
| May 18                                                                                                                   | 2010                                                                                          | Sept 27                | Oct 25            |  |
|                                                                                                                          |                                                                                               |                        |                   |  |
| June 22 O                                                                                                                |                                                                                               |                        | Oct 17 Nov 10-12  |  |

#### **Database** production

- April-September 2008 (KALAKA, reused for KALAKA-2)
- October-November 2008 + April-May 2010 (train and dev data for new languages)
- August-September 2010 (additional evaluation data)

(4) E (4) E (4) E

Motivation Test conditions Test conditions Data Organization **Results** Post-eval activity Conclusions

Participation CR-30 (mandatory condition) Dependence on duration Open-set tests Performance on noisy speech

## Participation

Participation: 4 teams, 21 systems

- GTC-VIVOLAB (4 systems: CC, OC: primary, contrastive)
- $L^2F$  (12 systems: all conditions: primary, contrastive-1, contrastive-2)
- UEF-NTNU (1 system: CC: primary)
- UVIGO-GTM (4 systems: CC, CN: primary, contrastive)



- A B K A B I

Motivation Test conditions Test conditions Data Organization Results Post-eval activity Conclusions

Participation CR-30 (mandatory condition) Dependence on duration Open-set tests Performance on noisy speech

## Participation

Participation: 4 teams, 21 systems

- GTC-VIVOLAB (4 systems: CC, OC: primary, contrastive)
- $L^2F$  (12 systems: all conditions: primary, contrastive-1, contrastive-2)
- UEF-NTNU (1 system: CC: primary)
- UVIGO-GTM (4 systems: CC, CN: primary, contrastive)

**Processing time:** all systems below  $1 \times RT$ 

| Systems     | CPU-RAM                         | $\times \mathbf{RT}$ |
|-------------|---------------------------------|----------------------|
| GTC-VIVOLAB | -                               | 0.9                  |
| L2F         | 2xQuad Xeon E5530 2.4GHz, 48 GB | 0.51                 |
| UEF_NTNU    | Xeon X5450 3.0GHz               | 0.051                |
| GTM (p)     | Xeon E5620 2.4 GHz, 18 GB       | 0.0288               |
| GTM (c)     | Xeon E5620 2.4 GHz, 18 GB       | 0.0533               |



. . . . . . . .

Participation CR-30 (mandatory condition) Dependence on duration Open-set tests Performance on noisy speech

### CC-30 (mandatory condition)

 $C_{avg}$  for systems submitted to the  ${\bf CC-30}$  test condition (in parentheses, results for post-key submissions)

|             | CC-30          |                          |        |
|-------------|----------------|--------------------------|--------|
|             | primary        | contrastive-1 contrastiv |        |
| GTC-VIVOLAB | 0.0184         | 0.0238                   | _      |
| $L^2F$      | 0.0320(0.0223) | $0.0910 \ (0.0219)$      | 0.0181 |
| UEF-NTNU    | -NTNU 0.1636   |                          | _      |
| UVIGO-GTM   | 0.1916         | 0.2888                   | _      |



Participation CR-30 (mandatory condition) Dependence on duration Open-set tests Performance on noisy speech

### CC-30 (mandatory condition)

 $C_{avg}$  for systems submitted to the  ${\bf CC-30}$  test condition (in parentheses, results for post-key submissions)

|             | CC-30          |                     |               |
|-------------|----------------|---------------------|---------------|
|             | primary        | contrastive-1       | contrastive-2 |
| GTC-VIVOLAB | 0.0184         | 0.0238              | _             |
| $L^2F$      | 0.0320(0.0223) | $0.0910 \ (0.0219)$ | 0.0181        |
| UEF-NTNU    | 0.1636         | -                   | _             |
| UVIGO-GTM   | 0.1916         | 0.2888              | -             |

• Award winner: GTC-VIVOLAB (best primary system in CC-30)



Participation CR-30 (mandatory condition) Dependence on duration Open-set tests Performance on noisy speech

### CC-30 (mandatory condition)

 $C_{avg}$  for systems submitted to the **CC-30** test condition (in parentheses, results for post-key submissions)

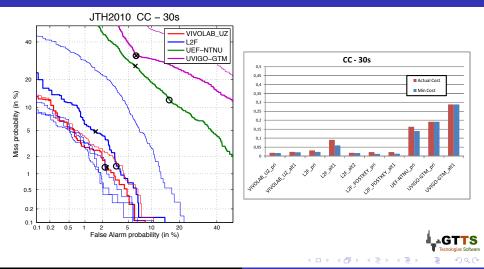
|             | CC-30          |                     |               |
|-------------|----------------|---------------------|---------------|
|             | primary        | contrastive-1       | contrastive-2 |
| GTC-VIVOLAB | 0.0184         | 0.0238              | _             |
| $L^2F$      | 0.0320(0.0223) | $0.0910 \ (0.0219)$ | 0.0181        |
| UEF-NTNU    | 0.1636         | -                   | _             |
| UVIGO-GTM   | 0.1916         | 0.2888              | —             |

- Award winner: GTC-VIVOLAB (best primary system in CC-30)
- Best result in CC-30:  $C_{avg} = 0.0181 \ (L^2 F \text{ contrastive-2})$



Participation CR-30 (mandatory condition) Dependence on duration Open-set tests Performance on noisy speech

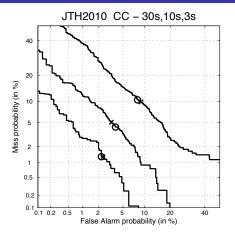
### CC-30 (mandatory condition)


 $C_{avg}$  for systems submitted to the  ${\bf CC-30}$  test condition (in parentheses, results for post-key submissions)

|             | CC-30          |                     |               |
|-------------|----------------|---------------------|---------------|
|             | primary        | contrastive-1       | contrastive-2 |
| GTC-VIVOLAB | 0.0184         | 0.0238              | _             |
| $L^2F$      | 0.0320(0.0223) | $0.0910 \ (0.0219)$ | 0.0181        |
| UEF-NTNU    | 0.1636         | -                   | _             |
| UVIGO-GTM   | 0.1916         | 0.2888              | —             |

- Award winner: GTC-VIVOLAB (best primary system in CC-30)
- Best result in CC-30:  $C_{avg} = 0.0181 \ (L^2 F \text{ contrastive-2})$
- Post-key submissions from  $L^2F$  didn't outperform the two systems above

Participation CR-30 (mandatory condition) Dependence on duration Open-set tests Performance on noisy speech

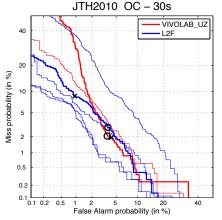

### CC-30 (mandatory condition)



Luis Javier Rodríguez-Fuentes et al. The Albayzin 2010 LRE (FALA 2010, Vigo, Spain)

Participation CR-30 (mandatory condition) **Dependence on duration** Open-set tests Performance on noisy speech

#### Dependence on duration

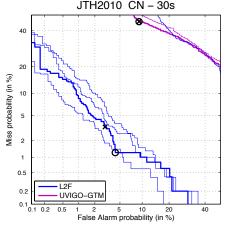



- C<sub>avg</sub> doubled from 30 to 10, and from 10 to 3 seconds (best primary system in CC-30)
- Similar trend in other conditions and for other systems
- Consistent with previous results in other evaluations



Participation CR-30 (mandatory condition) Dependence on duration **Open-set tests** Performance on noisy speech

#### Open-set tests




- $C_{avg} = 0.0307$  for GTC-VIVOLAB(p) in OC-30 (67%
  - cost increase wrt CC-30)
  - Similar figures for other systems: 49% and 88% cost increases for L<sup>2</sup>F(p) and L<sup>2</sup>F(c2)
  - Best performance in OC-30:  $C_{avg} = 0.0296 \ (L^2 F$ primary-postkey)
  - As shown in DET curves,  $C_{min}$  for some  $L^2F$  systems was below 0.02: over-training on dev? bad calibration?



Participation CR-30 (mandatory condition) Dependence on duration Open-set tests Performance on noisy speech

#### Performance on noisy speech



- New condition in this evaluation: noisy speech
- Only  $L^2F$  and UVIGO-GTM submitted systems to this condition
- Surprisingly good performance: cost increases only between 30% and 50% wrt performance on clean speech
- $L^2 F(\mathbf{p})$  yielded lower cost for CN-30 than for CC-30 !!
- Best performance in CN-30:  $C_{avg} = 0.0253 \ (L^2 F \text{ contrastive-2})$



Participation CR-30 (mandatory condition) Dependence on duration Open-set tests **Performance on noisy speech** 

#### Performance on noisy speech

• How do systems designed for clean speech behave when dealing with noisy speech?

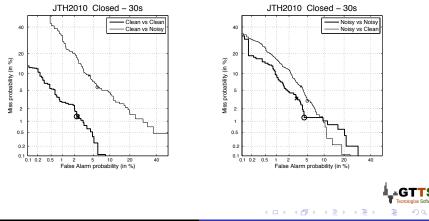


(4) E (4) E (4) E

Participation CR-30 (mandatory condition) Dependence on duration Open-set tests **Performance on noisy speech** 

### Performance on noisy speech

- How do systems designed for clean speech behave when dealing with noisy speech?
- How do systems designed for noisy speech behave when dealing with clean speech?

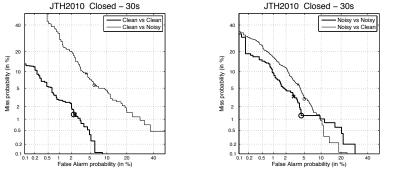





Participation CR-30 (mandatory condition) Dependence on duration Open-set tests **Performance on noisy speech** 

#### Performance on noisy speech

- How do systems designed for clean speech behave when dealing with noisy speech?
- How do systems designed for noisy speech behave when dealing with clean speech?



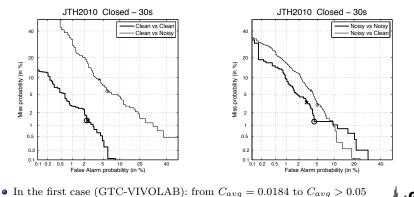



Participation CR-30 (mandatory condition) Dependence on duration Open-set tests **Performance on noisy speech** 

#### Performance on noisy speech

- How do systems designed for clean speech behave when dealing with noisy speech?
- How do systems designed for noisy speech behave when dealing with clean speech?




• In the first case (GTC-VIVOLAB): from  $C_{avg} = 0.0184$  to  $C_{avg} > 0.05$ 



Participation CR-30 (mandatory condition) Dependence on duration Open-set tests **Performance on noisy speech** 

#### Performance on noisy speech

- How do systems designed for clean speech behave when dealing with noisy speech?
- How do systems designed for noisy speech behave when dealing with clean speech?



• In the second  $(L^2F)$ : from  $C_{avg} = 0.0316$  to  $C_{avg} \approx 0.05$ 

Luis Javier Rodríguez-Fuentes et al. The Albayzin 2010 LRE (FALA 2010, Vigo, Spain)

#### Exploring cross-site fusions

• **Proposal:** to investigate which subsystems produce the best combinations under a FoCal-based fusion paradigm



- **Proposal:** to investigate which subsystems produce the best combinations under a FoCal-based fusion paradigm
- Unexplored cross-site fusions may give valuable cues about which kind of systems would be worth developing and combining



- **Proposal:** to investigate which subsystems produce the best combinations under a FoCal-based fusion paradigm
- Unexplored cross-site fusions may give valuable cues about which kind of systems would be worth developing and combining
- Focus on the core condition (CC-30)



- **Proposal:** to investigate which subsystems produce the best combinations under a FoCal-based fusion paradigm
- Unexplored cross-site fusions may give valuable cues about which kind of systems would be worth developing and combining
- Focus on the core condition (CC-30)
- 3 sites submitted log-likelihoods for their subsystems (previously undisclosed)



- **Proposal:** to investigate which subsystems produce the best combinations under a FoCal-based fusion paradigm
- Unexplored cross-site fusions may give valuable cues about which kind of systems would be worth developing and combining
- Focus on the core condition (CC-30)
- 3 sites submitted log-likelihoods for their subsystems (previously undisclosed)
- The organizing team (GTTS) provided the log-likelihoods for 3 subsystems developed for this evaluation



- **Proposal:** to investigate which subsystems produce the best combinations under a FoCal-based fusion paradigm
- Unexplored cross-site fusions may give valuable cues about which kind of systems would be worth developing and combining
- Focus on the core condition (CC-30)
- 3 sites submitted log-likelihoods for their subsystems (previously undisclosed)
- The organizing team (GTTS) provided the log-likelihoods for 3 subsystems developed for this evaluation
- All the information (log-likelihoods and brief descriptions of subsystems) was uploaded and results were released through the wiki

### Exploring cross-site fusions

Best cross-site fusions (for n subsystems,  $n \in [1, 5]$ )

| n | $C_{LLR}^{(dev)}$ | $C_{LLR}^{(eval)}$ | $C_{avg}^{(eval)}$ | Best fusion                                                                                        |
|---|-------------------|--------------------|--------------------|----------------------------------------------------------------------------------------------------|
| 1 | 0.23853           | 0.20643            | 0.0207             | GTTS_CZ                                                                                            |
| 2 | 0.02662           | 0.12151            | 0.0094             | L2F_PPRLM-ES+UZ_jfa                                                                                |
| 3 | 0.02066           | 0.10831            | 0.0066             | $L2F_PPRLM-EN+L2F_PPRLM-ES+UZ_jfa$                                                                 |
| 4 | 0.02707           | 0.11011            | 0.0059             | GTTS_CZ+L2F_PPRLM-ES+UZ_mmi+UZ_PRLM_ru                                                             |
| 5 | 0.01430           | 0.09723            | 0.0054             | ${\rm GTTS\_HU} + {\rm L2F\_PPRLM} - {\rm ES} + {\rm UZ\_jfa} + {\rm UZ\_ml} + {\rm UZ\_PRLM\_hu}$ |

The best fusion of 5 subsystems yielded  $C_{avg} = 0.0054$ , 3 times lower than that obtained by the best system in CC-30 (meaning 70% cost decrease)

## Conclusions

### ALBAYZIN 2010 Language Recognition Evaluation

• 6 target languages, including all the official languages in Spain and Portugal



< E

# Conclusions

### ALBAYZIN 2010 Language Recognition Evaluation

- 6 target languages, including all the official languages in Spain and Portugal
- A new database: **KALAKA-2** (125 hours), consisting of 16kHz speech signals taken from TV broadcasts



(3)

# Conclusions

### ALBAYZIN 2010 Language Recognition Evaluation

- 6 target languages, including all the official languages in Spain and Portugal
- A new database: **KALAKA-2** (125 hours), consisting of 16kHz speech signals taken from TV broadcasts
- Best system in the core condition:  $C_{avg} = 0.0181$ , a remarkable technology improvement with regard to the Albayzin 2008 LRE ( $C_{avg} = 0.0552$ )



# Conclusions

### ALBAYZIN 2010 Language Recognition Evaluation

- 6 target languages, including all the official languages in Spain and Portugal
- A new database: **KALAKA-2** (125 hours), consisting of 16kHz speech signals taken from TV broadcasts
- Best system in the core condition:  $C_{avg} = 0.0181$ , a remarkable technology improvement with regard to the Albayzin 2008 LRE ( $C_{avg} = 0.0552$ )
- New test condition on **noisy speech**: reasonably good results can be attained if suitable data are available to train and calibrate systems



# Conclusions

### ALBAYZIN 2010 Language Recognition Evaluation

- 6 target languages, including all the official languages in Spain and Portugal
- A new database: **KALAKA-2** (125 hours), consisting of 16kHz speech signals taken from TV broadcasts
- Best system in the core condition:  $C_{avg} = 0.0181$ , a remarkable technology improvement with regard to the Albayzin 2008 LRE ( $C_{avg} = 0.0552$ )
- New test condition on **noisy speech**: reasonably good results can be attained if suitable data are available to train and calibrate systems
- Post-eval activity: cross site FoCal-based subsystem fusions revealed great performance improvements, e.g. best fusion of 5 subsystems yielded  $C_{avg} = 0.0054$

(周) (ヨ) (ヨ)



• Thanks to the Organizing Committee of FALA 2010, specially Laura Docio for her support



< E



- Thanks to the Organizing Committee of FALA 2010, specially Laura Docio for her support
- Thanks to all the participants, for their work and feedback, and their collaboration in the cross-site fusion activity



4 王



- Thanks to the Organizing Committee of FALA 2010, specially Laura Docio for her support
- Thanks to all the participants, for their work and feedback, and their collaboration in the cross-site fusion activity
- Thank you all for your patience !!

