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ABSTRACT

This paper investigates the cross-task recognition and adaptation
performance of HMMs trained using either conventional maxi-
mum likelihood estimation or the discriminative maximum mu-
tual information estimation (MMIE) criterion. Initial experiments
used models trained on the low noise North American Business
news corpus of read speech. Cross-task testing on Broadcast News
data showed that the MMIE models yielded lower error rates both
across-task as well as within-task. This result was confirmed us-
ing models trained on the Switchboard corpus which were tested
on Voicemail {VM) data. This setup was alsc used to investigate
the performance of task-adaptation when using a limited amount
of VM data for both acoustic and language modelling. The setup
that gave the best performance on the VM test data used Switch-
board models trained using MMIE and then adapted to VM data
using maximum g pasteriori adaptation techniques.

1. INTRODUCTION

Standard speech recognition systems often perform well when tested
on data similar to that used in training, but give much higher error
rates when tested on data from a new task. Since collecting a large
amount of task-specific data is often impractical, it is necesaary to
build generic recognition systems which work well over a range of
tasks and good cross-task robustness is of great importance.

The main focus of this paper is to investigate the impact of the
training objective function on the genericity of large vocabulary
HMM-based speech recognition systems. In particular the use of
conventional maximum likelihood estimation (MLE) is compared
to discriminative training using maximum mutual information esti-
mation (MMIE}. While MMIE training has been shown to improve
performance when tested within-class [11], it is unclear as to how
well it generalises to data of a rather different type.

In addition we investigate how to make use of a relatively
small amount of task-specific data. Since task-adaptation tech-
niques are normally based on maximum a posteriori (MAP) esti-
mation, how adaptation interacts with the choice of generic model
training objective function is a key issue.

Our initial experiments on cross-task genericity used recogni-
tion systems trained on the low-noise North American Business
News (NAB) corpus of read newspaper texts and tested on tele-
vision and radio Broadcast News (BN} data. These showed that
MMIE-trained medels could indeed provide improved cross-task
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performance. Further experiments, which confirmed this effect,
used models trained on the Switchboard (SWB) corpus of con-
versational telephone speech and tested on data from Voicemail
(VM) messages. We also used this task setup to investigate how
well MMIE-trained models could be adapted to a new task using
conventional acoustic adaptation methods as well as the impact of
a task-specific language model.

The paper is organised as follows. First a brief review of our
approach to MMIE training is given followed by an overview of
the experimental setup for both cross-task recognition scenarios.
The NAB/BN cross-task experiments are presented next followed
by the SWB/VM experiments. Experiments are then discussed that
adapt the SWB acoustic models to VM data, as well as the effect
of using a task-specific language model.

2. MMIE TRAINING

MMIE training [1] maximises the mutual information between the
training word sequences and the observation sequences. When
the language model (LM) parameters are fixed during training, the
MMIE criterion increases the a posteriori probability of the word
sequence comresponding to the training data,

For R training observation sequences {Oh,...,0y,...Or}
with corresponding transcriptions {w. }, the MMIE objective func-
tion is given by

P (O [ Mo, ) P(wr)
3 o PA(On| M) P(air)

R
Frms(d) = Y _log 4y
r=1

where M, is the composite model corresponding to the word se-
quence w and P{w) is the probability of this sequence as deter-
mined by the language model. The denominator in (1) can be re-
placed by the likelihood given by a composite model that encodes
the full acoustic and language model used in recognition.

Normally MMIE would require a recognition pass of the train-
ing set for each iteration, but by using word lattices computed
once, the denominator term can be approximated in a computa-
tienally efficient manner [10]. The lattice-based framework used
in the current work uses fixed model alignments to increase speed
further and is described in detail in 8, 11). The Gaussian mix-
ture parameters can be updated using the Extended Baum-Welch
(EBW) algorithm [4, 6]. Given a suitable method to the choose
smoothing parameters, EBW can give rapid convergence [11].

While MMIE training is very effective at reducing the training
set error rate, test-set generalisation is a key issue. It has been
found that test-set generalisation can be improved by a process of
acoustic scaling [11] which increases the quantity of confusable
data in training and also by the use of a weak unigram language
model [9, 11] to focus on acoustic discrimination.



3. DATA SETS & EXPERIMENTAL SETUP

The following sections describe the experimental framework for
both the NAB/BN experiments and those on SWB/VM data. In
all cases the input data consists of PLP coefficients derived from
a mel-scale filter bank (MF-PLP), with 13 coefficients including
cg and their first and second-order differentials. All the HMMs
used were gender independent cross-word triphones built using
decision-tree state clustering. Unless otherwise stated, the experi-
ments don’t include unsupervised test-set adaptation.

In all cases where MMIE training was used, conventional MLE
was used to initialise the HMMs. For all sets of MMIE experi-
ments, word lattices for MMIE training were created using a bi-
gram language model, while unigram probabilities were actually
applied to these lattices for MMIE training.

All cross-task recognition experiments used a complete sin-
gle pass decoding run with a trigram language model to avoid any
possible cross-system effects from lattice-rescoring. The pronun-
ciation dictionaries used in training and test were originally based
on the 1993 LIMSI WSJ lexicon, but have been considerably ex-
tended and medified.

3.k. NAB/BN Systems & Data

The NAB system used HMMs trained on the SI-284 Wall Street
Journal database (66 hours of data) and used per-utterance cepstral
mean normalisation. This data is low noise and contains read-
speech. The HMMs have 6399 speech states and 12 mixture com-
ponents per state. Two sets of models were created. Initially an
HMM set using the close-talking channel 1 (NAB-C1) was cre-
ated using MLE, and then single-pass retraining was used to cre-
ate a second version using the far-field desktop microphone chan-
nel (NAB-C2). For each NAB MLE model set, a corresponding
MMIE-trained versicn of the HMM set was created. Within-task
recognition results for the NAB-C1 MMIE models were presented
in [8] in which MMIE yielded a 5.5% relative reduction in word
error rate (WER) over MLE models.

The cross-task data consists of the 1996 “partitioned evalua-
tion™ Broadcast News development test data (BNdev96pe}. This
is taken from 6 radio and television shows and was manually seg-
mented according to so-called “F-conditions” which describes the
type of data present, This data is particularly interesting for cross-
task testing since the impact of different types of data can be estab-
lished. More details on the BN test and training sets can be found
in [12). The LM used for this task was a 65k word trigram trained
primarily on BN text and newswire data. This LM was also used
in the 1996 CU-HTK evaluation system [12].

As a contrast, we also present results on the same BN test data
with HMMs trained solely on broadcast news data i.e. matched
training/test conditions. HMM sets were created with either 36 or
72 hours of BN data. The 36 hour set (BNtrain96) consists of the
training data available for the 1996 DARPA BN evaluation, while
the 72 hour set was the 1997 training data set (BNtrain97). The
MLE HMMs estimated from BNirain96 had 5628 states while the
BNtrain97 had 6684 states. Both HMM sets had 12 Gaussians per
state. For BNtrain97 an MMIE version of the model set was also
created.

3.2. SWB/VM Systems & Data

For the Switchboard systems, we used HMM:s trained on a total of
265 hours of data taken from the Switchboardl and Call Home En-

glish corpora which both consist of telephone conversations. The
data had cepstral mean and variance normalisation applied on a
conversation side basis, along with vocal tract length normalisa-
tion. The HMMs used had 6165 clustered speech states and 16
Gaussians per state. Two SWB HMM sets of this structure were
created with either MLE or MMIE training. The SWB model sets
are denoted SWB-MLE and SWB-MMIE. The SWB-MMIE mod-
els were the best performing triphone models from [11] and in-
cluded a lattice re-alignment phase. The performance of these
model sets was benchmarked on the 1998 Hub5 evaluation data
set, eval98. On that data, the SWB-MLE had a 45.6% WER and
the the SWB-MMIE models 41.5% [11] (a 9.0% relative reduction
in WER). These tests used a 27k word vocabulary and a trigram
LM (SWB-LM) formed by the interpclation of language models
trained on Switchboard and Broadcast News text data.

The cross-task chosen for the SWB system used the Voice-
mail (VM) corpus. This data was collected by IBM (7] and made
available through the LDC. The VM corpus consists of a set of
voice-mail telephone messages. The speaking styles in this data
are rather different from those typically found in SWB telephone
conversations. Two VM test sets were used: one which is the “de-
vtest™” set from the LDC VM corpus and a further test set obtained
directly from IBM. Both of these test sets are small (11 minutes
and 23 minutes) and so we combined them to form a single VM
test set (VMtest) of 34 minutes consisting of 92 separate VM mes-
sages'. We processed the supplied transcriptions to ensure compat-
ibility with the SWB-LM conventions (removed compound words,
expanded capital letter acronynms to a sequence of single letters)
and also made some minor corrections.

Twenty hours (1801 messages) of VM training data (VMtrain)
were also made available. We used this data in several ways. First,
using MLE, we created HMMs which were solely trained with VM
data. These models had 4626 clustered states and 12 Gaussians per
state. Due to the limited amount of training data we did not create
an MMIE version of these models, but rather created an MMIE
version of models with 6 Gaussians per state. We also used MAP
[3] to adapt the SWB HMM s to the VM task and compared the use
of 1 hour, 4 hours or 20 hours of VM data for adaptation. Further-
more, we used the transcriptions of VMitrain to augment the 27k
SWB-LM vocabulary (to a total of 29k words). An interpolated
language model was then created from the VMtrain transcriptions,
the SWB training transcriptions and BN text transcriptions which
is denoted VM-LM.

4. NAB/BN EXPERIMENTS

The aim of these initial experiments was primarily to compare the
effect of MMIE and MLE for cross-task recognition. Since MMIE
models are more highly tuned to discriminating their training data
it is unclear how well the models will generalise to situations un-
seen in training. Hence it is particularly interesting to compare the
performance of the training schemes across situations which have
a severe mismatch.

The results of testing the various NAB channel 1 and chan-
nel 2 models described in Sec. 3.1 on the BNdev96pe test set is
shown in the first part of Table 1. The results of some of the main
F-conditions are also given. While all of the broadcast news data
is mismatched to the NAB low noise read-speech training data, the

1deally a larger VM test set would have been used, but no more suitable
test data was available.



prepared native-speaker FO data would be thought to be the best
matched. Other F-conditions shown in Table 1 include F1 (spon-
taneous speech); F2 (low-fidelity channels, e.g. telephone); F4
(noisy speech) and FX that represents all other speech types (e.g.
spontaneous speech from non-natives) and is the most challenging
to recognise.

5.1. Genericty & Task-Specific Adaptation

The results of cross-task training with the SWB HMMs is shown in
Table 2. When the SWB-LM is used (i.e. there is no task-specific
data) the MMIE trained models show a 2.9% absoiute reduction in
WER over the MLE models.

HMM Set Language | VM Adaptation Data (hours)
Train Setup Avg | FO F1 F2 F4 FX Model None 1 4 20
NAB-C1 MLE 398 | 154 ] 374 | 62.0 | 33.7 | 644 SWB-MLE SWB-LM | 46.1 | 45.7 | 43.5 | 41.0
NAB-CIMMIE | 380 | 152 | 35,6 |'59.1 | 31.5 | 61.7 SWB-MMIE | SWB-LM | 43.2 [ 42.2 | 40.7 | 395
NAB-C2MLE | 36.0 | 163 | 352 | 514 | 286 | 58.5 SWB-MLE | VM.LM 369 | 3521 343 | 327
NAB-C2MMIE | 34.1 | 158 | 33.5 ] 49.2 | 281 | 531 SWB-MMIE | VM-LM 326 | 3221318 | 309

BN-36H MLE 317 | 12.8 1 285 { 42.6 | 254 | 56.8
BN-T2HMLE 296 | 11.6 | 262 | 38.7 | 24.6 | 554
BN-T2HMMIE | 278 | 114 | 2451349 ] 232 | 513

Table 1. %WER on BNdev96pe data using trigram, GI, for NAB
channel 1 and channet 2 models trained with ¢ither MLE or MMIE.
The use of BN training data is also shown for comparison,

There are a number of points to note about the results in Ta-
ble 1. The NAB-C2 medels give a lower WER than NAB-CI
for all conditions apart from FO. However more interestingly the
MMIE-trained models are consistently better than the MLE mod-
els in cross-task testing (as they are also within-task), and the dif-
ference is greatest for the conditions that are most mismatched to
the training data ¢.g. there is a 5.4% absolute reduction in WER
for the NAB-C2 MMIE models for FX data. These resuits imply
that MMIE-training is likely to be superior to MLE training for
the creation of general-purpose HMMs that operate well across a
range of tasks including conditions not seen in training.

The lower portion of Table 1 gives the performance of within-
task testing on BN data with varying amounts of training. Com-
pared to the best NAB training setup (NAB-C2 MMIE), MLE
training on BN data gives considerable improvements on FO and
F1 (3.0% and %.5% absolute with 36 hours of BN training data),
but surprisingly on the most difficult mismatched FX data the NAB-
C2 MMIE models outperform those trained with MLE on even 72
hours of BN data, As would be expected, the use of MMIE training
using the 72 hour BN corpus gives an overall errer rate reduction
of 1.8% absolute and yields the lowest word error rates over atl
F-conditions. In passing we believe that the results of MMIE BN
training are themselves of interest as this is, to our knowledge, the
first time that MMIE training on the BN corpus has been reported.

5. SWB/VM EXPERIMENTS

The aim of the experiments in this section was first to confirm the
superiority of MMIE training for cross-task recognition on a rather
different task setup, i.e. Switchboard HMMs tested on Veicemail
data. We also wanted to investigate how a limited amount of VM
training data could best be used. Several avenues have been inves-
tigated including MAP acoustic adaptation with varying amounts
of VM data and adapting the language model based on the VM
transcriptions. In Sec. 5.2 the use of MMIE training on the VM
corpus is investigated and compared to adapting the SWB models.
Finally in Sec. 5.3 the effect of unsupervised test-set maximum
likelihood linear regression (MLLR) {5, 2] adaptation is investi-
gated for the various models.

Table 2. %WER on the VM test data for supervised MAP adap-
tation with varying amounts of VM training data. Either MLE or
MMIE Switchboard HMM sets were used with either the SWB or
the VM interpolated language model.

Table 2 also shows the effect of using various guantities of VM
training data for supervised MAP adaptation [3]. All MAP exper-
iments reported use a prior-weight (7) value of 10. It was found
that for this task and the quantity of data used, MAP out-performed
supervised MLLR adaptation and gave as good results as MLLR
followed by MAP. As expected the reduction in WER increases
steadily as more adaptation data is used: 1 hour gives only small
improvements while for 20 hours of VM adaptation data, the WER
was reduced by 3.7% absolute for SWB-MMIE and by 5.1% ab-
solute for SWB-MLE. The reductions in WER due to MAP with
various amounts of VM acoustic data can be related directly to the
percentage of Gaussians that are reasonably well adapted. It was
found that for 1 hour of data only 5% of the Gaussians receive
more than 10 observations, while this is increased to 32% with 4
hours of data and 79% with 20 hours.

The effect of using the VM-LM is also shown in Table 2.
With no acoustic adaptation the WER is reduced by 9.2% absolute
for SWB-MLE, and by 10.6% absolute for SWB-MMIE with the
adapted LM. Hence, in this case, the use of language model adap-
tation (by itself) is more effective than just acoustic adaptation. It
was found that the main improvements in performance with the
VM-LM were due to improved recognition of typical “voicemail
phrases™ such as message openings (e.g. “hi Jane, this is" ) and
closings (¢.g. “talk to you later”, “give me a call”).

When acoustic adaptation is combined with the use of the VM-
LM the further gains due to acoustic adaptation are reduced i.e. the
gains due to acoustic and LM adaptation are not additive. The to-
tal improvements from using 20 hours of data for both language
model and acoustic adaptation are 13.4% absolute for the SWB-
MLE HMMs and 12.3% for the SWB-MMIE models. This meant
that even after 20 hours of task-specific adaptation the MMIE mod-
¢ls have a sizable advantage.

It is interesting, and perhaps surprising, to note that conven-
tional MAP adaptation remains effective when applied to models
trained with MMIE (in the limit of a very large adaptation set MAP
will converge to the MLE solution). To give further insight into
this issue we examined how well the the SWB-MMIE models pet-
formed after a single iteration of MLE updating using the complete
265 hour Switchboard training set on the eval98 test set. While the
performance degraded from 41.5% to 44.6% it is still somewhat
better than the baseline MLE system (45.6%). For the MAF adap-
tation experiments discussed here over an order of magnitude less
data is used, and hence a much smaller disturbance occurs to the
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MMIE-trained Gaussian parameters. Therefore most of the advan-
tage of the original MMIE training is retained.

5,2, MMIE Training on VM Data

The use of either the 20 hour MAP-adapted SWB-MLE or SWB-
MMIE models is compared to using HMMs trained solely on 20
hours of VM data in Table 3 for both the SWB-LM and VM-LM.

HMM Set Language Model
SWB-LM | VM-LM
SWB-MLE + 20hr VM 41.0 327
SWB-MMIE + 20hr VM 39.5 309
VM-MMIE (6 mix comp) 40.5 340
VM-MLE (6 mix comp) 42.5 358
VM-MLE (12 mix comp) 41.9 35.5

Table 3. %WER on VMitest for 20 hours of VM acoustic data
used either for MAP adaption or for pure VM HMMs. Results are
shown for either MLE or MMIE training are shown, with either
the SWB-LM or the VM-LM.

It can be seen from Table 3 that with the SWB-LM the perfor-
mance of the best {2 mixture component VM MLE-trained acous-
tic models is a little poorer (0.9% absolute) than the adapted SWB-
MLE models, and 2.4% absolute poorer than the VM-adapted SWB-
MMIE HMMs. It is interesting to note that this gap in performance
becomes noticeably larger when using the VM-LM and there ap-
pear to be additional advantages in using an adapted generic HMM
set in this case.

As a further contrast we applied MMIE training to the 6 mix-
ture component VM models and obtained on average a 1.9% (5%
relative) reduction in WER over the 6 mixture component MLE
models. These HMMs give the best performance of those trained
purely on VM data, but are still some way behind the performance
of the SWB-MMIE models with MAP adaptation.

5.3. Unsupervised Test-Set Adaptation

Finally we investigated the performance of unsupervised test-set
MLLR adaptation [5, 2]. The MLLR setup used a regression-class
tree and updated both the Gaussian means and variances.

HMM Set Language | No VM Adapt | 20 hour Adapt
Model Base | MLLR | Base | MLLR
SWB-MLE SWB-LM | 46.1 45.0 41.0 399
SWB-MMIE | SWB-LM | 43.2 41.5 39.5 382
SWB-MLE VYM-LM 369 352 327 31.8
SWB-MMIE | VM-LM 32,6 34 309 29.7

Table 4. %WER on the VM test data with (MLLR) and with-
out (Base) unsupervised MLLR adaptation for both the MLE and
MMIE SWB model sets with either SWB-LM or VM-LM.

The results of these experiments are shown in Table 4. All
the results of unsupervised test set adaptation give reductions in
WER in the range 0.9% to 1.7% absolute and MLLR seems to
work equally well across the different types of HMM training and
language model. We also obtained similar improvements when
testing HMMs trained solely on VM. The best resuit we have ob-
tained on the VM test data to date (29.7%) used the SWB-MMIE
models with MAP adaptation to 20 hours of VM training data, the
VYM-LM and unsupervised MLLR adaptation.

6. CONCLUSIONS

This paper has discussed the creation of HMMs aimed at improved
performance when tested on new data types (i.e. cross-task recog-
nition). It has been shown that MMIE training improves cross-
task performance, both for the recognition of broadcast news using
models trained on low-noise read speech, and for the transcription
of voicemail data based on Switchboard-trained HMMs, The ad-
vantage of MMIE over conventional MLE training appears to in-
crease as the mismatch between training and test data increases. It
was further found that it is advantageous to use the MMIE trained
Switchboard HMMs when up to 20 hours of voicemail data is
available for both acoustic and language model adaptation since
MAP adaptation continues to perform well when applied to large
MMIE-trained models.
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