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Abstract 
Vector quantization (VQ) is a efficient technique for data 
compression with a minimum distortion. VQ is widely used in 
applications as speech and image coding, speech recognition, 
and image retrieval. This paper presents a novel fast nearest-
neighbor algorithm and shows its application to speech 
recognition. The proposed algorithm is based on a fast pre-
selection that reduces the search to a limited number of code 
vectors. The presented results show that the computational 
cost of the VQ stage can be significantly reduced without 
affecting the performance of the speech recognizer. 

1. Introduction 
Vector quantization (VQ) is a powerful and popular method 
for data compression [1]. In the encoding process, the standard 
full-search VQ finds the nearest code vector for each input 
vector by exhaustively computing its distance to each of the 
code vectors in the codebook. Then, the index of the nearest 
neighbor is used to encode o represent the input vector. 
In speech recognition systems based on Semi Continuous 
Hidden Markov Models (SCHMM) and in other applications, 
the search is extended to the k-nearest-neighbors. 
Although VQ is an very efficient technique, its practical 
application is limited by the computational cost of the nearest-
neighbor algorithm. This has motivated the research in the 
development of methods to accelerate the VQ process. We can 
classify previous fast algorithms into two groups.  
The first group consider structured codebooks (tree-structured 
VQ, multi-stage VQs, lattice VQ, …) that are sub-optimal 
because they impose constrains in the code vectors, the search 
pattern or in both. For example, in tree-structured VQ [1], the 
search is performed in stages. At each stage or node of the 
tree, the distance of the input vector to m representing vectors 
is computed. The nearest representing vector determines which 
of the m output paths is selected to reach the next node. This 
selection implies a reduction in the number of candidate 
vectors to 1/mth the previous set. The result is a very fast 
algorithm, at the expenses of a sub-optimal result. The 
resulting code vector may not be the one with the lowest 
distance. 
The second group of algorithms consider unstructured 
codebooks and the exact nearest-neighbor solution. Most of 
them exploits the inherent structure of the code vectors and 
offer very good results if the vector components are not 
independent [2]. Moreover, although the code vectors are not 
constrained to a structure, the algorithms are usually based on 
a search tree or a multistage approach. 

The most effective algorithms begin with an initial structured 
search. This first step identifies a region in the space and the 
subset of code vector inside it. Then, a post-processing 
algorithm based on geometric properties is applied to find the 
optimal vector inside or around the cluster. In the next section, 
we present a short review of this kind of algorithms. 
In this paper we propose an algorithm with a similar initial 
approach but with a different post-processing strategy. The 
proposed algorithm performs the search in two steps. The first 
step pre-selects a reduced number of code vectors using a low-
cost method. Then, in the second step, the algorithm performs 
an exhaustive search restricted to this pre-selected cluster of 
code vectors.  
In the proposed algorithm, the preselected subset of code 
vector indexes are precalculated off-line and stored in a table. 
To determine the table, we propose here a statistically-trained 
approach based on a training set of representing input vectors.  
The proposed search algorithm does not guarantee the exact k-
nearest code vector indexes in the 100% of the cases. 
However, the performance on the tested scenario is as good as 
the obtained with an exact brute force search with a important 
reduction in the computational cost and a simple 
implementation. 
Moreover, in most applications the codebook itself is usually 
designed using a training data and an algorithm that does not 
guarantee the optimal set of code vectors. Therefore, we can 
employ the same training date to design the look-up table of 
the proposed almost optimal fast algorithm without any 
practical degradation in performance. 
An standard a simple full-search improvement known as 
partial distance search algorithm (PDS) [3] is also considered 
in this paper for the second step. Other fast search algorithms 
briefly described in the following section may be as well 
combined with the proposed algorithm to accelerate the 
second step. 

2. Fast nearest-neighbor algorithms 
Given a codebook of N code vectors of dimension d, the brute 
force algorithm requires the computation of N distances. If we 
consider a Euclidean distance: 

 D2(x, c) = �
i=1

d
  (xi  - ci)2 (1) 

the resulting algorithm requires a search time of O(N d). 
To reduce the cost of this approach, many fast encoding 

algorithms have been proposed in the literature. Most of them 
are based on the combination of the following techniques. 



2.1. Partial Distance Search 

In the exhaustive-search approach, the distance between the 
input vector and each code vector is first computed using (1) 
and then compared to the distance to the kth nearest-neighbor 
found so far. A simple variation of this algorithm originally 
proposed by Cheng et al. [3] consists in performing the 
comparison inside the loop that computes the distance sum. If 
the partial sum exceeds the distance to the kth nearest-
neighbor found so far, the rest of the loop is skipped. 

Although the PDS algorithm increases the number of 
instructions inside the loop, the important reduction in the 
number of loop iterations give an overall substantial decrease 
in the computational cost. The PDS approach can be 
optimized by a principal component rotation of the codebook. 
Since this rotation causes the partial distance along the 
directions of largest variance to be calculated first in the loop, 
the loop iterations are further reduced [4]. 

2.2. Lower-bound based algorithms 

Typically, these algorithms avoid the calculation of all the 
distances by the estimation of a lower bound. If the lower 
bound on the distance between the input vector and a code 
vector (or a set of code vectors) is greater than the distance to 
the kth nearest-neighbor found so far, the vector (or set of 
code vectors) is discarded without the need of computing the 
corresponding distance. An example for Euclidean distance 
can be found in [5] and a more general approach based on the 
triangle inequality in [6]. 

2.3. Projection methods 

Fast nearest-neighbor algorithms based on projection try to 
translate the search from the d-dimensional space to a linear 
subspace. For example, the equal-average nearest-neighbor 
search uses the mean of the input vector (projection onto the 
central direction (1; 1; …;1); ) to search and select a subset of 
the previously mean-ordered code vectors [7][8]. This simple 
method has received great attention and several extensions 
can be found in the literature. However, this approach gives 
good results only if the central direction is close to the 
principal component direction. 

A more rigorous and general approach is to consider the 
projection directions given by a principal component analysis 
as proposed by C.Y. Chen et al. [9], and by S.C. Tai et al. 
[10], among others. 

2.4. Search Trees 

Search Trees is a usual approach to obtain fast search 
algorithms. Search trees divide the code vectors into two o 
more distinct subsets. Each subset is recursively subdivided 
until the number of code vectors in the terminal subset is 
small. The search for the nearest neighbors begins with the 
root node and work toward the terminal nodes. Sub-optimal 
tree-searched vector quantizers (TSVQ) were first proposed 
by Buzo et al [11] as a natural byproduct of the splitting 
algorithm for generating initial code guesses in the codebook 
design.  

The TSVQ doubles the storage requirements, so its 
application to large codebooks is still limited. The Multi-stage  

VQ originally proposed by B.-H. Juang and Gray [12] is a 
sub-optimal fast VQ with an important reduction on storage 
requirements. In the multi-stage VQ the search is also 
performed in two or more stages, but we have now only one 
set of the code vectors at each stage. The input vector is first 
quantized by the first codebook. Then, the difference between 
the input vector and the selected code vector is computed and 
successively applied as input to the following stages. Its 
practical application is limited by the constraints on the 
equivalent code vectors and by the sub-optimal multi-stage 
search procedure that severely limits its performance. 

Search trees or multi-stage approaches can also be applied 
to unconstrained codebooks and exact fast nearest-neighbor 
searches. For example, an algorithm based on principal axis 
trees called PAT was proposed by McNames [2]. The PAT 
algorithm uses an efficient search tree to partition the code 
vectors into regions that have approximately the same density 
locally. A recursive binary search from the root node until a 
terminal node identifies the partition that contains the input 
vector. After computing the distance to code vectors in this 
partition, the algorithm consider other sibling partitions and 
applies elimination strategies using lower bounds. 

A simpler algorithm for unconstrained codebooks based 
on a multi-stage approach was proposed by Woo et al. in [13]. 
The first stage of this algorithm uses a small codebook to 
identify a first coarse partition. In the second stage the search 
is restricted to the subset of code vectors which Voronoi 
partitions are inside or intersect with the first coarse partition. 
However, for large codebooks and large dimensions its 
practical interest is quite limited because the subset tends to 
be very large and may require a prohibitive time-consuming 
preprocessing. 

2.5. Fine-coarse VQ 

The search-tree or multi-stage approaches described above 
start with the identification of a coarse partition of the search 
space. The size of this partition is then successively reduced 
until the identification of the code vector, i.e., the associated 
Voronoi partition in which the input vector lies. 

Moayeri proposed in [14] the opposite two-stage strategy 
called fine-coarse VQ (FCVQ). In the first stage, a fine 
quantizing partition is identified using a very large structured 
codebook. The output of this first fine quantizer, is then used 
as input by the unstructured codebook of interest. The benefit 
of FCVQ is that the second stage of quantization can be 
performed by table lookup, and consequently, does not add 
arithmetic complexity to that of the fast first stage. FCVQ is 
not an exact method, but its performance can be as close to 
the optimum as desired if sufficient storage for the fine 
structured quantizer and the lookup table is available. 

A similar strategy named subcodebook searching (SCS) 
was proposed by Tai et al in [10]. Here, the first fine stage of 
SCS selects a subset of code vectors instead of a single code 
vector. Then, a full search is performed restricted to this  
preselected subset.  

The new algorithm described in the next section, named 
subcodebook pre-selection (SCPS), extends the FSVQ, SCS 
and multi-stage [13] approaches to the k-nearest-neighbors 
case.  



3. Subset selection based on the k1-nearest-
neighbors of a smaller codebook 

This section describes a new k-nearest-neighbors searching 
algorithm based on a first pre-selection that restricts the 
search to a limited subset of code vectors. This paper studies 
the selection the of code vectors to be searched based on the 
k1-nearest-neighbors of a smaller codebook. 

3.1. Search Algorithm 

In the first stage the algorithm finds the k1 nearest code 
vectors of a small codebook. Then, the k1 indexes of this first 
stage are combined and used to address a lookup table that 
selects a reduced number of code vectors to be searched in the  
second stage. A standard k-nearest-neighbors full-search or 
PDS method is finally applied to the subset of selected code 
vectors. 

3.2. Codebook design 

The codebook of the second stage is the unconstrained 
codebook of interest. It can be designed with any standard 
procedure using a training sequence. In our experiments the 
smaller codebook of the first stage was also designed with the 
same standard procedure and training sequence. 

3.3. Lookup table 

The lookup table maps the k1 indexes of the first stage with 
the list of possible k-nearest-neighbors of the second stage. 
The combination of the k1 indexes of the first stage represents 
a fine partition of the search space. Therefore, for each 
combination of indexes, it is required to determined the 
Voronoi regions of the second stage that are inside or 
intersect the associated partition. An exhaustive search 
method can be used to construct a complete list of code 
vectors. This complete list of candidates would result in a 
algorithm completely equivalent to the full search case.  

However, this exhaustive search is a time consuming 
process for creating the lookup table. Moreover, we are not 
interested here in a complete list, but in a ‘representative’ list 
with an equivalent performance and a minimal computational 
cost.  

In the experiments presented in the next section the 
lookup table is constructed using a very large training 
sequence. For this purpose, the training sequence is quantized 
with the first and second codebook using an exact k-nearest-
neighbors full-search algorithm. The complete list of the k-
nearest indexes of the second stage is then associated with 
combined index formed with the k1 indexes of the first stage. 

4. Results 
The proposed algorithm was developed with the objective of 
reducing the computational cost of IberVox. IberVox is a 
widely used commercial product based on licensed speech 
technology of the Universidad Politécnica de Cataluña and 
additional software developed by Applied Technologies on 
Language and Speech S.L. (www.atlas-cti.com). IberVox is 
based on semicontinuous hidden Markov models. The 
sampled signal is processed to obtain three value vectors of 
dimension d = 14: the MFCC (Mel-Frequency Cepstral 
Coefficients) and their two first temporary derivatives. Each 

of these vectors is vector quantified to the closest 6 (from a 
total of 512) code vectors of the corresponding codebook. 

For tasks with small vocabularies, as connected digit 
recognition, the computational cost of the vector quantizers 
represented the 30% of the total computational cost. The 
application of the algorithm described in this paper reduced in 
a 80% the computational load of the vector quantizer. For that 
recognition task, the total reduction of the computational cost 
of the system was a 25%. In order to compare this results with 
other fast algorithms we have to keep in mind that most of 
them are optimized or valid only for the single nearest-
neighbor case. Very few publications has studied optimized 
algorithms or presented results for the k-nearest-neighbors 
case. 

The codebooks and lookup tables were trained using the 
Spanish SpeechDat databases [15] with a total of more than 
500.000 training vectors for each codebook. For the first stage 
of the proposed SCPS algorithm we considered two codebook 
sizes. A codebook of size N1 = 64 with k1 = 2 nearest indexes, 
and a codebook of size N1 = 16 with k1 = 3 nearest indexes. In 
both cases the lookup tables required about 250 Kbytes of 
extra memory. 

For the creation of the lookup table we obtained the exact 
VQ results with the smaller codebook proposed for the first 
stage and with the second codebook of size N = 512. Then, 
we computed the probability of appearance of the indexes of 
the second codebook for a given combination of k1 indexes of 
the first codebook. The size of the table and the performance 
of the algorithm was optimized based on the observation that 
code vectors of very low probability (outliers) can be 
discarded form the lookup table without any loss in 
recognition performance. 

In both stages of the SCPS algorithm we also consider the 
inclusion of the PDS method. Moreover, the effectiveness of 
PDS in the second stage was optimized by sorting the 
subcodebook indexes as a function of its probability given the 
k1 indexes of the first stage. PDS is more effective if, in 
average, we consider first the associated code vectors with 
higher probability. 

We included the SCPS algorithm in the VQ module of 
IberVox to study its effect in different speech recognition 
tasks using testing signals outside the training data. In all the 
cases the performance of the recognizer was as good as with 
the full-search algorithm, with a significant reduction in 
computational cost. Table 1 shows the average number of 
computed distances or partial distances (PDS) and the average 
search time for the full-search algorithm, the standard PDS 
algorithm, and the proposed SCPS algorithm. 

Table 1: Average number of computed (partial) 
distances and relative average search time. 

d=14  N=512  k=6 Average number of 
computed distances 

Relative 
VQ cost 

Full search 512 100 
Full search - PDS 512 76 
SCPS (N1=64 k1=2) 64 + 71 28 
SCPS (N1=16 k1=3) 16 + 91 20 

 
The best results were obtained with the codebook of size 

N1=16 and k1=3 for the first stage. In this case the PDS 
method did not improve the performance of the first 



quantizer, but it added an significant reduction to the cost of 
the search in the final second probability-sorted subcodebook. 

5. Conclusions 
This work introduced a new fast k-nearest-neighbors 
algorithm for vector quantizers called SCPS, and studied its 
application to speech recognition. The proposed SCPS 
algorithm has two stages. The first stage uses the k1 nearest 
indexes of a small quantizer and a lookup table to select the 
subset of code vectors to be searched. Then, the second stage 
performs a PDS search restricted to this subset of the code 
vectors of interest to obtain the final list of k nearest code 
vectors. 

The proposed approach can be viewed as an extension of 
the subcodebook searching (SCS) approach proposed by Tai 
et al in [10] and the fine-coarse vector quantization proposed 
by Moayeri [14]. For the first partition, we proposed here the 
use of two or more indexes of a coarse quantizer to obtain a 
moderately-fine initial partition but large structured 
codebooks can be considered as well for this first stage. 
Additionally, finer partitions and larger lookup tables can be 
considered to obtain better performance at the expenses of 
significant storage requirements. 

The algorithm was applied to different speech recognition 
tasks. The results show that the computational cost of the VQ 
can be significantly reduced without affecting the 
performance of the speech recognition systems.  
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