
Fast vector quantization based on subcodebook selection
and its application to speech recognition

José A. R. Fonollosa

TALP Research Center
Universidad Politécnica de Cataluña

www.talp.upc.es

Abstract
Vector quantization (VQ) is a efficient technique for data
compression with a minimum distortion. VQ is widely used in
applications as speech and image coding, speech recognition,
and image retrieval. This paper presents a novel fast nearest-
neighbor algorithm and shows its application to speech
recognition. The proposed algorithm is based on a fast pre-
selection that reduces the search to a limited number of code
vectors. The presented results show that the computational
cost of the VQ stage can be significantly reduced without
affecting the performance of the speech recognizer.

1. Introduction
Vector quantization (VQ) is a powerful and popular method
for data compression [1]. In the encoding process, the standard
full-search VQ finds the nearest code vector for each input
vector by exhaustively computing its distance to each of the
code vectors in the codebook. Then, the index of the nearest
neighbor is used to encode o represent the input vector.
In speech recognition systems based on Semi Continuous
Hidden Markov Models (SCHMM) and in other applications,
the search is extended to the k-nearest-neighbors.
Although VQ is an very efficient technique, its practical
application is limited by the computational cost of the nearest-
neighbor algorithm. This has motivated the research in the
development of methods to accelerate the VQ process. We can
classify previous fast algorithms into two groups.
The first group consider structured codebooks (tree-structured
VQ, multi-stage VQs, lattice VQ, …) that are sub-optimal
because they impose constrains in the code vectors, the search
pattern or in both. For example, in tree-structured VQ [1], the
search is performed in stages. At each stage or node of the
tree, the distance of the input vector to m representing vectors
is computed. The nearest representing vector determines which
of the m output paths is selected to reach the next node. This
selection implies a reduction in the number of candidate
vectors to 1/mth the previous set. The result is a very fast
algorithm, at the expenses of a sub-optimal result. The
resulting code vector may not be the one with the lowest
distance.
The second group of algorithms consider unstructured
codebooks and the exact nearest-neighbor solution. Most of
them exploits the inherent structure of the code vectors and
offer very good results if the vector components are not
independent [2]. Moreover, although the code vectors are not
constrained to a structure, the algorithms are usually based on
a search tree or a multistage approach.

The most effective algorithms begin with an initial structured
search. This first step identifies a region in the space and the
subset of code vector inside it. Then, a post-processing
algorithm based on geometric properties is applied to find the
optimal vector inside or around the cluster. In the next section,
we present a short review of this kind of algorithms.
In this paper we propose an algorithm with a similar initial
approach but with a different post-processing strategy. The
proposed algorithm performs the search in two steps. The first
step pre-selects a reduced number of code vectors using a low-
cost method. Then, in the second step, the algorithm performs
an exhaustive search restricted to this pre-selected cluster of
code vectors.
In the proposed algorithm, the preselected subset of code
vector indexes are precalculated off-line and stored in a table.
To determine the table, we propose here a statistically-trained
approach based on a training set of representing input vectors.
The proposed search algorithm does not guarantee the exact k-
nearest code vector indexes in the 100% of the cases.
However, the performance on the tested scenario is as good as
the obtained with an exact brute force search with a important
reduction in the computational cost and a simple
implementation.
Moreover, in most applications the codebook itself is usually
designed using a training data and an algorithm that does not
guarantee the optimal set of code vectors. Therefore, we can
employ the same training date to design the look-up table of
the proposed almost optimal fast algorithm without any
practical degradation in performance.
An standard a simple full-search improvement known as
partial distance search algorithm (PDS) [3] is also considered
in this paper for the second step. Other fast search algorithms
briefly described in the following section may be as well
combined with the proposed algorithm to accelerate the
second step.

2. Fast nearest-neighbor algorithms
Given a codebook of N code vectors of dimension d, the brute
force algorithm requires the computation of N distances. If we
consider a Euclidean distance:

 D2(x, c) = �
i=1

d
 (xi - ci)2 (1)

the resulting algorithm requires a search time of O(N d).
To reduce the cost of this approach, many fast encoding

algorithms have been proposed in the literature. Most of them
are based on the combination of the following techniques.

2.1. Partial Distance Search

In the exhaustive-search approach, the distance between the
input vector and each code vector is first computed using (1)
and then compared to the distance to the kth nearest-neighbor
found so far. A simple variation of this algorithm originally
proposed by Cheng et al. [3] consists in performing the
comparison inside the loop that computes the distance sum. If
the partial sum exceeds the distance to the kth nearest-
neighbor found so far, the rest of the loop is skipped.

Although the PDS algorithm increases the number of
instructions inside the loop, the important reduction in the
number of loop iterations give an overall substantial decrease
in the computational cost. The PDS approach can be
optimized by a principal component rotation of the codebook.
Since this rotation causes the partial distance along the
directions of largest variance to be calculated first in the loop,
the loop iterations are further reduced [4].

2.2. Lower-bound based algorithms

Typically, these algorithms avoid the calculation of all the
distances by the estimation of a lower bound. If the lower
bound on the distance between the input vector and a code
vector (or a set of code vectors) is greater than the distance to
the kth nearest-neighbor found so far, the vector (or set of
code vectors) is discarded without the need of computing the
corresponding distance. An example for Euclidean distance
can be found in [5] and a more general approach based on the
triangle inequality in [6].

2.3. Projection methods

Fast nearest-neighbor algorithms based on projection try to
translate the search from the d-dimensional space to a linear
subspace. For example, the equal-average nearest-neighbor
search uses the mean of the input vector (projection onto the
central direction (1; 1; …;1);) to search and select a subset of
the previously mean-ordered code vectors [7][8]. This simple
method has received great attention and several extensions
can be found in the literature. However, this approach gives
good results only if the central direction is close to the
principal component direction.

A more rigorous and general approach is to consider the
projection directions given by a principal component analysis
as proposed by C.Y. Chen et al. [9], and by S.C. Tai et al.
[10], among others.

2.4. Search Trees

Search Trees is a usual approach to obtain fast search
algorithms. Search trees divide the code vectors into two o
more distinct subsets. Each subset is recursively subdivided
until the number of code vectors in the terminal subset is
small. The search for the nearest neighbors begins with the
root node and work toward the terminal nodes. Sub-optimal
tree-searched vector quantizers (TSVQ) were first proposed
by Buzo et al [11] as a natural byproduct of the splitting
algorithm for generating initial code guesses in the codebook
design.

The TSVQ doubles the storage requirements, so its
application to large codebooks is still limited. The Multi-stage

VQ originally proposed by B.-H. Juang and Gray [12] is a
sub-optimal fast VQ with an important reduction on storage
requirements. In the multi-stage VQ the search is also
performed in two or more stages, but we have now only one
set of the code vectors at each stage. The input vector is first
quantized by the first codebook. Then, the difference between
the input vector and the selected code vector is computed and
successively applied as input to the following stages. Its
practical application is limited by the constraints on the
equivalent code vectors and by the sub-optimal multi-stage
search procedure that severely limits its performance.

Search trees or multi-stage approaches can also be applied
to unconstrained codebooks and exact fast nearest-neighbor
searches. For example, an algorithm based on principal axis
trees called PAT was proposed by McNames [2]. The PAT
algorithm uses an efficient search tree to partition the code
vectors into regions that have approximately the same density
locally. A recursive binary search from the root node until a
terminal node identifies the partition that contains the input
vector. After computing the distance to code vectors in this
partition, the algorithm consider other sibling partitions and
applies elimination strategies using lower bounds.

A simpler algorithm for unconstrained codebooks based
on a multi-stage approach was proposed by Woo et al. in [13].
The first stage of this algorithm uses a small codebook to
identify a first coarse partition. In the second stage the search
is restricted to the subset of code vectors which Voronoi
partitions are inside or intersect with the first coarse partition.
However, for large codebooks and large dimensions its
practical interest is quite limited because the subset tends to
be very large and may require a prohibitive time-consuming
preprocessing.

2.5. Fine-coarse VQ

The search-tree or multi-stage approaches described above
start with the identification of a coarse partition of the search
space. The size of this partition is then successively reduced
until the identification of the code vector, i.e., the associated
Voronoi partition in which the input vector lies.

Moayeri proposed in [14] the opposite two-stage strategy
called fine-coarse VQ (FCVQ). In the first stage, a fine
quantizing partition is identified using a very large structured
codebook. The output of this first fine quantizer, is then used
as input by the unstructured codebook of interest. The benefit
of FCVQ is that the second stage of quantization can be
performed by table lookup, and consequently, does not add
arithmetic complexity to that of the fast first stage. FCVQ is
not an exact method, but its performance can be as close to
the optimum as desired if sufficient storage for the fine
structured quantizer and the lookup table is available.

A similar strategy named subcodebook searching (SCS)
was proposed by Tai et al in [10]. Here, the first fine stage of
SCS selects a subset of code vectors instead of a single code
vector. Then, a full search is performed restricted to this
preselected subset.

The new algorithm described in the next section, named
subcodebook pre-selection (SCPS), extends the FSVQ, SCS
and multi-stage [13] approaches to the k-nearest-neighbors
case.

3. Subset selection based on the k1-nearest-
neighbors of a smaller codebook

This section describes a new k-nearest-neighbors searching
algorithm based on a first pre-selection that restricts the
search to a limited subset of code vectors. This paper studies
the selection the of code vectors to be searched based on the
k1-nearest-neighbors of a smaller codebook.

3.1. Search Algorithm

In the first stage the algorithm finds the k1 nearest code
vectors of a small codebook. Then, the k1 indexes of this first
stage are combined and used to address a lookup table that
selects a reduced number of code vectors to be searched in the
second stage. A standard k-nearest-neighbors full-search or
PDS method is finally applied to the subset of selected code
vectors.

3.2. Codebook design

The codebook of the second stage is the unconstrained
codebook of interest. It can be designed with any standard
procedure using a training sequence. In our experiments the
smaller codebook of the first stage was also designed with the
same standard procedure and training sequence.

3.3. Lookup table

The lookup table maps the k1 indexes of the first stage with
the list of possible k-nearest-neighbors of the second stage.
The combination of the k1 indexes of the first stage represents
a fine partition of the search space. Therefore, for each
combination of indexes, it is required to determined the
Voronoi regions of the second stage that are inside or
intersect the associated partition. An exhaustive search
method can be used to construct a complete list of code
vectors. This complete list of candidates would result in a
algorithm completely equivalent to the full search case.

However, this exhaustive search is a time consuming
process for creating the lookup table. Moreover, we are not
interested here in a complete list, but in a ‘representative’ list
with an equivalent performance and a minimal computational
cost.

In the experiments presented in the next section the
lookup table is constructed using a very large training
sequence. For this purpose, the training sequence is quantized
with the first and second codebook using an exact k-nearest-
neighbors full-search algorithm. The complete list of the k-
nearest indexes of the second stage is then associated with
combined index formed with the k1 indexes of the first stage.

4. Results
The proposed algorithm was developed with the objective of
reducing the computational cost of IberVox. IberVox is a
widely used commercial product based on licensed speech
technology of the Universidad Politécnica de Cataluña and
additional software developed by Applied Technologies on
Language and Speech S.L. (www.atlas-cti.com). IberVox is
based on semicontinuous hidden Markov models. The
sampled signal is processed to obtain three value vectors of
dimension d = 14: the MFCC (Mel-Frequency Cepstral
Coefficients) and their two first temporary derivatives. Each

of these vectors is vector quantified to the closest 6 (from a
total of 512) code vectors of the corresponding codebook.

For tasks with small vocabularies, as connected digit
recognition, the computational cost of the vector quantizers
represented the 30% of the total computational cost. The
application of the algorithm described in this paper reduced in
a 80% the computational load of the vector quantizer. For that
recognition task, the total reduction of the computational cost
of the system was a 25%. In order to compare this results with
other fast algorithms we have to keep in mind that most of
them are optimized or valid only for the single nearest-
neighbor case. Very few publications has studied optimized
algorithms or presented results for the k-nearest-neighbors
case.

The codebooks and lookup tables were trained using the
Spanish SpeechDat databases [15] with a total of more than
500.000 training vectors for each codebook. For the first stage
of the proposed SCPS algorithm we considered two codebook
sizes. A codebook of size N1 = 64 with k1 = 2 nearest indexes,
and a codebook of size N1 = 16 with k1 = 3 nearest indexes. In
both cases the lookup tables required about 250 Kbytes of
extra memory.

For the creation of the lookup table we obtained the exact
VQ results with the smaller codebook proposed for the first
stage and with the second codebook of size N = 512. Then,
we computed the probability of appearance of the indexes of
the second codebook for a given combination of k1 indexes of
the first codebook. The size of the table and the performance
of the algorithm was optimized based on the observation that
code vectors of very low probability (outliers) can be
discarded form the lookup table without any loss in
recognition performance.

In both stages of the SCPS algorithm we also consider the
inclusion of the PDS method. Moreover, the effectiveness of
PDS in the second stage was optimized by sorting the
subcodebook indexes as a function of its probability given the
k1 indexes of the first stage. PDS is more effective if, in
average, we consider first the associated code vectors with
higher probability.

We included the SCPS algorithm in the VQ module of
IberVox to study its effect in different speech recognition
tasks using testing signals outside the training data. In all the
cases the performance of the recognizer was as good as with
the full-search algorithm, with a significant reduction in
computational cost. Table 1 shows the average number of
computed distances or partial distances (PDS) and the average
search time for the full-search algorithm, the standard PDS
algorithm, and the proposed SCPS algorithm.

Table 1: Average number of computed (partial)
distances and relative average search time.

d=14 N=512 k=6 Average number of
computed distances

Relative
VQ cost

Full search 512 100
Full search - PDS 512 76
SCPS (N1=64 k1=2) 64 + 71 28
SCPS (N1=16 k1=3) 16 + 91 20

The best results were obtained with the codebook of size

N1=16 and k1=3 for the first stage. In this case the PDS
method did not improve the performance of the first

quantizer, but it added an significant reduction to the cost of
the search in the final second probability-sorted subcodebook.

5. Conclusions
This work introduced a new fast k-nearest-neighbors
algorithm for vector quantizers called SCPS, and studied its
application to speech recognition. The proposed SCPS
algorithm has two stages. The first stage uses the k1 nearest
indexes of a small quantizer and a lookup table to select the
subset of code vectors to be searched. Then, the second stage
performs a PDS search restricted to this subset of the code
vectors of interest to obtain the final list of k nearest code
vectors.

The proposed approach can be viewed as an extension of
the subcodebook searching (SCS) approach proposed by Tai
et al in [10] and the fine-coarse vector quantization proposed
by Moayeri [14]. For the first partition, we proposed here the
use of two or more indexes of a coarse quantizer to obtain a
moderately-fine initial partition but large structured
codebooks can be considered as well for this first stage.
Additionally, finer partitions and larger lookup tables can be
considered to obtain better performance at the expenses of
significant storage requirements.

The algorithm was applied to different speech recognition
tasks. The results show that the computational cost of the VQ
can be significantly reduced without affecting the
performance of the speech recognition systems.

6. References
[1] A. Gersho and R. M. Gray, Vector Quantization and

Signal Compression. Kluwer Academic Publishers,
Boston, 1992.

[2] J. McNames, “A Fast Nearest-Neighbor Algorithm Based
on a Principal Axis Search Tree,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 23, no. 9, Sep.
2001.

[3] D.Y. Cheng, A. Gersho, B. Ramamurthi, and Y. Shoham,
“Fast Search Algorithms for Vector Quantization and
Pattern Matching,” Proc. IEEE Intl. Conf. Acoustics,
Speech, and Signal Processing, vol. 1, pp. 9.11.1-9.11.4,
Mar. 1984.

[4] J. McNames, “Rotated Partial Distance Search for Faster
Vector Quantization Encoding,” IEEE Signal Processing
Letters, vol. 7, no. 9, Sep. 2000.

[5] L. Torres, J. Huguet, “An improvement on codebook
search for vector quantization, ” IEEE Trans.
Communications, vol. 42, no. 2, pp. 208 –210, Feb.
1994.

[6] E. Vidal, “An algorithm for finding nearest neighbors in
approximately constant average time complexity,”
Pattern Recognition Letters, vol. 4, pp 145-157, 1986.

[7] L. Guan and M. Kamel, “Equal-average hyperplane
partitioning method for vector quantization of image
data,” Pattern Recognition Letters, pp. 693–699, 1992.

[8] S.W. Ra and J. K. Kim, “A fast mean-distance-ordered
partial codebook search algorithm for image vector
quantization,” IEEE Trans. Circuits Systems, vol. 40, pp.
576–579, Sept. 1993.

[9] C.Y. Chen, C.C. Chang, and R.C.T. Lee, “A Near
Pattern-Matching Scheme Based Upon Principal

Component Analysis,” Pattern Recognition Letters, vol.
16, pp. 339-345, Apr. 1995.

[10] S.C. Tai, C.C. Lai, and Y.C. Lin, “Two Fast Nearest
Neighbor Searching Algorithms for Image Vector
Quantization,” IEEE Trans. Communications, vol. 44,
no. 12, pp. 1623-1628, Dec. 1996.

[11] A. Buzo, A. H. Gray Jr., R. M. Gray and J. D. Markel,
“Speech coding based upon vector quantization,” IEEE
Trans. Acoustics, Speech, and Signal Processing, vol. 28,
pp 562-574, Oct. 1980.

[12] B.H. Juang, A.H. Gray, “Multiple Stage Vector
Quantization for Speech Coding,” Proc. IEEE Intl. Conf.
Acoustics, Speech, and Signal Processing, pp. 597-600,
Mar. 1982.

[13] H.C. Woo, and T. P. Barnwell III, “Fast codeword search
for vector quantization using a multi-stage approach,”
Proc. IEEE Intl. Conf. Acoustics, Speech, and Signal
Processing, vol. 5, pp. 2629-2632, June 2000.

[14] N. Moayeri, D. L. Neuhoff, and W. E. Stark, “Fine-
Coarse Vector Quantization,” IEEE Trans. Signal
Processing, vol. 39, no. 7, pp. 1503-1515, July 1991.

[15] SpeechDat. Speech Databases for the creation of voice
driven teleservices. EC Telematics. Language
Engineering Resources. http://www.speechdat.org.

