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ABSTRACT

One of the most successful models for speech recognition has been
the HMM with mixture of Gaussians in the states to generate/capture
observations. In this work we show how the addition of a parameter
to model higher order moment statistics, such us the kurtosis, can
provide improvements to the system. The distributions in which
this degree of freedom is integrated are the generalized Gaussians.
It is shown a method to estimate the parameters of these distribu-
tions even if they are embedded in a HMM or mixture of distri-
butions. Some experimental results are obtained with this method
compared to baseline systems of full and diagonal covariance ma-
trices.

1. INTRODUCTION

This paper offers a new approach to model more accurately the ob-
servation generation process in the states of the HMM. The work-
ing hypothesis for the approach of this paper is that there is infor-
mation in the speech signal which is not accurately captured by
standard models in the states of the HMMs, usually GMMs with
diagonal covariance matrix.

In this paper we propose to increase the complexity of the pdfs
which are the components of the mixture in the states of the HMM
by adding a degree of freedom to control a higher order moment,
the kurtosis. The basic idea is that the new pdfs should be able to
capture or generate data with statistics beyond the normal distribu-
tion.

The goal of models in speech recognition is to keep the maxi-
mum of information that we think it is useful to recognize speech,
not to synthesize a speech waveform. In this work we try to im-
prove the quality of the statistics captured from the speech signal
in order to capture the maximum of information. To do so, a modi-
fication in the nature of the Gaussian distribution is proposed. The
proposed probability density function is the Generalized Gaussian
distribution [1, 2], this distribution has an additional parameter over
the normal distribution which controls the fourth order moment.
For selected values of this parameter the distribution can adapt its
shape to many symmetric distributions as the normal, the Lapla-
cian, or even the uniform and Dirac’s delta for extreme values. The
generalized Gaussian distribution provides a richer mechanism to
adapt to feature statistics.

Some authors have contributed to similar lines of research to
enhance the models ability to generalize but the application of the
generalized Gaussian distributions in the generation of observa-
tions is novel. The generalized Gaussian is an interesting distri-
bution but to be useful in speech recognition, two additional mech-
anisms are proposed to complete those models. The first one is
related to the fact that the generalized Gaussian, as the Gaussian,
is not a multimodal distribution. In order to adapt to the com-
plex statistics of the speech signal a hidden variable mechanism
is needed to explain the observation in a more accurate way. This
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is achieved with the mixtures of generalized Gaussians. The pa-
rameter estimation will demand a modification in the standard EM
algorithm based in the method of moments. The second one is to
consider a method to reduce the amount of correlation in the fea-
tures that we want to model. The features we want to model are
usually vector valued. The simplest approach to face multivariate
distributions is to use a Naive Bayes approach assuming indepen-
dence between the features. The proposal to overcome this sim-
plicity in order to find more complex dependences is to assume a
linear transformation of the vector by means of a rotation which
preserves the scale of the projected vectors.

This paper is organized as follows. In Section 1 there is an in-
troduction. In Section 2 the generalized Gaussian is described. In
Section 3 the parameter estimation is discussed. In Section 4 a ro-
tation is included to model covariance.In Section 5, the estimation
in hidden variable structures is presented. Experimental results are
shown in Section 6 and finally conclusions are in Section 7.

2. GENERALIZED GAUSSIAN DISTRIBUTION

The Gaussian distribution is adequate for many problems in speech
technologies but is still limited in the sense of modeling accurately
distributions with a wide range of high order moments, greater to
the second order. The Gaussian distribution has a fixed value of 3
for the kurtosis, which is related to the fourth order moment.

Along this paper we modify the Gaussian fundamental distri-
bution to include an additional parameter which controls the kur-
tosis of the distribution, This distribution is called a generalized
Gaussian (GG) [1, 2] and has the following definition: a continu-
ous real valued random variable is assumed to follow a generalized
Gaussian distribution if the probability density function takes the
form:

x ∼ GG(µ, σ, α), x ∈ R (1)

f(x|µ, σ, α) =
β(α)

2Γ
`
1 + 1

α

´
σ
e
−|β(α)

x−µ
σ |α , (2)

where α is called the shape parameter and β(α) and Γ (x) are de-
fined as:

β(α) =

s
Γ
`

3
α

´
Γ
`

1
α

´ , Γ (x) =

∞Z
0

t
x−1

e
−t
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The parameter α in (2) controls the kurtosis of the distribution.
We can see that for some values of α the distribution equals some
well known distributions. For α = 1 the expression (2) equals
the Laplacian distribution, for α = 2 the Gaussian distribution and
as α tends to infinity the distributions gets closer to the uniform
distribution, U(µ − √

3σ, µ +
√

3σ) and if alpha tends to 0+ the
distribution is closer to a degenerated function, the dirac’s delta.
This is exemplified in Figure 1, where some examples of the pdf
(2) are plot varying the value of the parameter α for a fixed value
of µ = 0 and σ = 1.
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Figure 1. Examples of GG probability density functions for some
values of the shape parameter alpha.

In [3] a general study about the GGs and its moments is per-
formed. The even order moments of the distribution can be ex-
pressed in terms of the parameters . The following is a general
expression of a centered moment of even orders r:

M
∗
r = E[(x− µ)r] =

 
σ2Γ

`
1
α

´
Γ
`

3
α

´
! r

2 Γ
`

r+1
α

´
Γ
`

1
α

´ (4)

The central moments of odd r orders are equal to zero due to the
symmetry of the pdf with respect to the mean.

From expression (12) we can see that if the order is r = 2:

M
∗
2 = E[(x− µ)2] = σ

2
, (5)

where it interesting to note that the variance only depends on the
parameter σ in the model pdf, which makes expression (2) a very
convenient parametrization. Also it will be of interest for the esti-
mation process the moment of order 4 as will see in next section.

3. ESTIMATION OF PARAMETERS OF GG
DISTRIBUTIONS

In [1] the estimation of moments method was proposed, this a sim-
ple alternative since in order to fix the three parameters we only
have to propose a system of equations with three moments, the
mean, the variance and the fourth order as will see. In [2] similar
method was proposed to estimate the parameters µ and σ from the
moment estimator and the shape parameter using a expression that
related the variance, the mean of the absolute values and the shape
parameter. In our work we are going to focus on the moment esti-
mation method, we will argue some reasons for this selection due
to the nature of the model, the HMM, that the pdf is going to be
embedded into. Firstly we will compare the methods in [2] and [3]
with the moment estimation method in [1].

In order to establish the notation, let us consider a random vari-
able X with outcomes x ∈ R, which is assumed to follow a GG
distribution as expressed in (2). The training is set is defined as
X = {x1, . . . , xn, . . . , xN}. The pdf is going to be estimated
from a i.i.d.(identically distributed) sequence of samples from the
variable X.

The parameters µ and σ in all those methods are estimated with
equal expressions, the standard moments mean and variance. The
expressions are:

µ̂ = M1 =
1

N

NX
n=1

xn, σ̂
2 = M

∗
2 =

1

N

NX
n=1

(xn − µ̂)2, (6)

The shape parameter can be estimated using the moment es-
timation method. Since all odd order centered moments are zero,
and the shape parameter only is present in the centered moments
of order r ≥ 4, then this method is based on the calculation of a

moment in this range of orders and also the sample estimator for
this moment.

M
∗
r =

1

N

NX
n=1

(xn − µ̂)r
, (7)

for any r even and r ≥ 4.
Then, considering the simplest case r = 4, we can obtain the

value of α from the following expression:

M
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In order to reduce the sensitivity of the estimation compared to
the calculation of the fourth order moment, an alternative method
was proposed in [2]. It was demonstrated the following depen-
dency of a function of the shape parameter with the mean of the
absolute value of the random variable:

σ̂2

(E[|x− µ̂|])2 =
Γ
`

1
α

´
Γ
`

3
α

´
`
Γ
`

2
α

´´2 . (9)

which involves lower order moments computations and more esti-
mation accuracy.

Now we discuss which is the best method to estimate the pa-
rameters of the generalized Gaussian distribution in order to be
easily embedded in an HMM and as a component of a mixture of
models. A first approach to the previously presented estimation
methods shows that the method based on the absolute value mean
is more robust and accurate than the method of moments, which is
based on the estimation of moments of orders r = 4 and r = 2.

Nevertheless, there is an important argument in favour of the
method of moments which is the implementation convenience. The
estimators in the method of moments with orders r = 4 and r = 2
can be implemented in one pass over the training data. Therefore
the integration in a multiple iteration training procedure as the EM
algorithm as an HMM or a mixture of models will be more natural.

The estimators of the centered moments cannot be directly
computed in one pass in the training process since while we have
access to the samples xn in the training process we have not cal-
culated the mean for that iteration. In the following expression
we perform some algebraic manipulations and the expressions are
transformed to:

M
∗
2 =

1

N
S2 − 1

N2
(S1)

2 (10)

and

M
∗
4 =

1

N
S4 − 4

N2
S1 · S3 +

6

N3
(S1)

2 · S2 − 3

N4
(S1)

4 (11)

Therefore, the moment estimators can be implemented in one pass
and the only operations needed during the iteration are the accu-
mulation of powers of the samples. The accumulators are defined
as Sr =

P
n xr

n for orders r = 1, 2, 3, 4.

4. DIAGONALIZATION OF GG DISTRIBUTIONS

Usually, the first approach to a multivariate model is to use the
independence assumption of the Naive Bayes approach. Let us
suppose that we are modeling the probability density function of a
D-dimensional feature vector, x = (x1, . . . , xd, . . . , xD). We can
assume that each individual component of the vector follows a GG.
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The likelihood of that model can be expressed as:

x ∼ GGD(µ, σ, α), x ∈ R
D (12)

f(x|µ, σ, α) =
DY
d

f(xd|µd, σd, αd) (13)

=

DY
d

β(αd)

2Γ
“
1 + 1

αd

”
σd

e
−

˛
˛
˛β(αd)

xd−µd
σd

˛
˛
˛
αd

,

(14)

where each component of the vector is modeled by an independent
GG distribution, with parameters µd, σd and αd. It is clear from the
independence approximation that the estimation of the parameters
can be performed with the method of moments for each component
of the feature vector separately. The limitation of this technique is
similar to the limitation of a Gaussian with diagonal covariance
matrix, which is a special case of the previous model, where all the
values αd = 2.

We propose the use of a linear transformation to reduce the cor-
relation between the variables in the vector. The method consists
in the estimation of a linear transformation matrix, A, to transform
the random vector x to a vector y as:

y = Ax (15)

where the objective is that the components of random vector y can
be considered independent and its covariance matrix be diagonal.
The problem of diagonalizing a covariance matrix is the classic
problem of the principal component analysis (PCA).

The probability density function of the resulting random vari-
able which is obtained applying a function y = g(x) = Ax over
the existing variable y is:

fy(y) = fx(g−1(y))

˛̨̨
˛ δg−1(y)

δy

˛̨̨
˛ = fx(A−1

y)
˛̨
A

−1
˛̨

(16)

One of the properties that it would be desiderable for the linear
transformation is that |A−1| = 1, so that we can easily apply the
Naive Bayes GG distribution to the transformed vectors x. This
is also desiderable since no further re-scaling of the likelihood is
needed, this provides an important simplicity if the likelihood is
going to be compared or operated with other likelihoods as in a
mixture of models or in HMMs.

The question that remains is how to calculate the transforma-
tion A. This problem can be solved considering two expressions:
the relationship of the covariance matrices of variables in a linear
transformation and the decomposition theorem. Given a random
vector x with a full covariance matrix Σx, then the covariance ma-
trix of the random vector y = Ax is Σy = AΣxA

T . The eigen-
decomposition a semidefinite positive matrix V can be obtained as
V = UΛUT , where the matrix Λ is a diagonal matrix with the
eigenvalues of V as the diagonal elements and the matrix U are
the eigenvectors of V as columns.

If we use both results we can find the linear transformation of
the variable y which makes the covariance matrix Σx diagonal as
the eigen vectors of the matrix Σy by columns.

In the Figure 2 there is an example, we can see the pdf of some
artificially generated data of a random vector of dimension D = 2.
We can see that after the linear transformation, for the pdf in Fig-
ure 2b the main variation axis are the cartesian coordinate system
which makes possible the application of a Naive Bayes GG distri-
bution.

5. MIXTURES OF GG DISTRIBUTIONS

Similarly to the case of multivariate Gaussian distributions, an uni-
modal pdf is not an accurate model for the complexity of the speech
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Figure 2. Example of 2D GG distributions. a) A rotated space GG
distributrion b) Naive Bayes multivariate GG

signal. The mixture model is a natural solution to increase the
modes of a pdf and to adapt to higher complexities in the data.

A mixture of GG distributions of C components is defined as a
weighted sum of the pdfs of the components in the following way:

f(x) =
CX

c=1

pc · β(αc)

2Γ
“
1 + 1

αc

”
σ
e
−

˛
˛
˛β(αc)

x−µc
σc

˛
˛
˛
α

c , (17)

where for simplicity all the derivations in this section are expressed
in terms of an univariate GG.

The previous expression can be considered the marginalization
of hidden discrete variable Z that can take values z ∈ {1, . . . , C}
which selects a from a pull of GG distributions as shown in [4].
This variable is assumed to follow a Multinomial distribution. The
pdf of the variable Z is a Multinomial of size z+ = 1 and proto-
type vector p = (p1, . . . , pc, . . . , pC),

Z ∼ Mult(1,p), z ∈ {1, . . . , C}, p(Z = z) =
CY

c=1

p
δz,c
c ,

(18)

The estimation of the parameters of a probability model in
which there are hidden variables involved is usually solved with
the EM algorithm [5] The E step auxiliary function is:

Q(Θ|Θ(k)) = E[log p(X,Z|Θ)|X,Θ
(k)] (19)

=
X

n

X
c

〈δZ,c〉(k)

Z|xn

· (log pc+

+ log

„
β(αc)2Γ

„
1 +

1

αc

«
σc

«
−
˛̨̨
˛β(αc)

xn − µc

σc

˛̨̨
˛
αc
«

where 〈δZ,c〉(k)
Z|xn

is a short notation for the expected value of

the function δZ,c of the variable Z conditioned to X = xn:

〈δZ,c〉(k)

Z|xn

= EZ [δZ,c|xn,Θ
(k)] (20)

=
X
∀z

δz,c · p(Z = z, |xn,Θ
(k))

= p(Z = c|xn,Θ
(k))

=
p(Z = c|Θ(k)) · f(xn|Z = c,Θ(k))P
c′

p(Z = c′|Θ(k)) · f(xn|Z = c′,Θ(k))

where f(xn|Z = c,Θ(k)) is the component specific GG pdf.
It is possible to find an alternative to the EM direct estimation

where the maximization step is substituted by a special moment
estimation. This algorithm which is called expectation moment
estimation (EME). It can be applied in general to any distribution
for which we have defined moments of the distribution in terms of
the parameters.
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Figure 3. Experimental WER results for Aurora2 database test set a, for moderate noisy conditions for the different techniques a) clean
condition train, b) multi condition train.

The main result of the algorithm is the moment estimation ME
step. The ME step, provides estimates for the moments of the dis-
tributions which are components of the mixture as a function of the
expected values previously calculated 〈δZ,c〉(k)

Z|xn

. The first order

moment for the component c of the mixture is computed as:

M
(k+1)
1,c = µ

(k)
c =

PN

n=1〈δZ,c〉(k)
Z|xn

· xnPN

n=1〈δZ,c〉(k)
Z|xn

, (21)

And the centered moments of order r for the component c of the
mixture:

M
∗(k+1)

r,c =

PN

n=1〈δZ,c〉(k)
Z|xn

“
xn − µ

(k+1)
c

”r

PN

n=1〈δZ,c〉(k)

Z|xn

. (22)

Depending on the number of free parameters in the model a
number of these EME expressions will be needed. For a gener-
alized Gaussian distribution, the number of equations needed is
three: M (k)

1,c , M∗(k)
2,c and M∗(k)

4,c .
The procedure to estimate in a single pass the EME r = 2

and r = 4 order moments can be written in a similar way to the
previously shown for the moment estimation method.

6. EXPERIMENTS

The different proposals in this paper have been evaluated on the
Aurora 2 task [6] which is a connected digit strings recognizing
task in different noise environments. The feature set are the adv
ETSI front-end features [7], and the baseline system has been trained
with HMM word models of 14 states and 3 component Gaussian
mixtures for the digits, a 1 state with 6 components model for the
inter-word silence unit and a 3 state with 6 components model for
the begin-end silence unit. The models were trained with 20 itera-
tions of the EM algorithm.

In Figure 3 we can see experiments performed in Aurora 2 cor-
pus. There are two baseline systems the observation distribution is
a Gaussian mixture in both of them but in a case there are diagonal
covariance matrices and in the other full covariance matrices. The
results for the GG distributions are also shown where we can see
that the error is below the corresponding baseline system in all the
cases. We compare the mixture of Gaussians system with the mix-
ture of GG system, and the full covariance Gaussian system with
rotated GG, performed as shown in Section 4. The mean WER

(word error rate) reduction for noise free condition training (clean)
in clean test set a is 10.3% of GGs with respect to Gaussians and
21.1% of rotated GGs with respect to full covariance Gaussians.

7. CONCLUSIONS

In this work it has been shown a method to model high order mo-
ments with a distribution in which a parameter related with the
kurtosis can be configured. Some methods are provided to esti-
mate the parameters of these distributions, and also the solution to
the estimation when the distributions are the outputs of a model
with hidden variables. We have seen that the models with the ad-
ditional degree of freedom perform better than the baseline system
specially in noise free conditions.
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