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ABSTRACT

There is significant interest in developing new acoustic
models for speech recognition that overcome traditional
HMM restrictions. In this work, we propose to use N-
gram based augmented HMMs. Two approaches are pre-
sented. The first one consists on overcoming the param-
eter independence assumption. This is achieved by mod-
eling the dependence between the different acoustic pa-
rameters, using N-gram modeling. Then, the input signal
is mapped to the new probability space. The second pro-
posal tries to overcome the time independence assump-
tion, by modeling temporal dependencies of each acoustic
feature. Different configurations have been tested for con-
nected digit and continuous speech recognition, results
showing that adding long span information is beneficial
for ASR performance.

1. INTRODUCTION

For modeling temporal dependencies or multi-modal dis-
tributions of ‘real-world’ tasks, Hidden Markov Models
(HMM) are one of the most commonly used statistical
models. Because of this, HMMs have become the stan-
dard solution for modeling acoustic information in the
speech signal and thus for most current speech recogni-
tion systems. When putting HMMs into practice, how-
ever, there are some assumptions that, even if effective,
are known to be poor [1], degrading classification perfor-
mance. Adding dependencies through expert knowledge
and hand tuning can improve models, but it is often not
clear which dependencies to include. Therefore, the de-
velopment of new acoustic models that overcome tradi-
tional HMM restrictions is an active field of research in
Automatic Speech Recognition (ASR).

In order to overcome HMM limitations, many exten-
sions have been proposed. One interesting approach for
allowing complex dependencies to be represented are aug-
mented statistical models [2], which are used in this pa-
per in a new framework for dealing with temporal and
parameter dependencies while still working with regular
HMMs.
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2. MODELING TIME AND PARAMETER
DEPENDENCES

In HMMs there are some assumptions that make evalu-
ation, learning and decoding feasible. Among them, the
Markov assumption for the Markov chain [1] states that
the probability of a state s; depends only on the previous
state s;_;. Also, when working with different parameters
to represent the speech signal, we rely on the parameter
independence assumption. It states that the acoustical pa-
rameters modeled by HMMs are independent, and so are
the output symbol probabilities emitted.

However, in many cases, the independence and condi-
tional-independence assumptions encoded in these latent-
variable models are not correct, potentially degrading clas-
sification performance. For modeling dependencies be-
tween features, Gaussian mixture distribution-based tech-
niques are very common. The parametric modeling of
cepstral features with full covariance Gaussians using the
ML principle is well-known and has led to good perfor-
mance. However, these techniques are expensive with
real-time and/or low resource applications.

For modeling time-domain dependencies, several ap-
proaches have focused on studying the temporal evolution
of the speech signal to optimally change the duration and
temporal structure of words, known as duration model-
ing [3]. However, incorporating explicit duration models
into the HMM structure also breaks some of conventional
Markov assumptions: when the HMM geometric distri-
bution is replaced with an explicitly defined one, Baum-
Welch and Viterbi algorithms are no longer directly ap-
plicable. In another approach to overcome the tempo-
ral limitations of the standard HMM framework, alter-
native trajectory modeling [4] has been proposed, tak-
ing advantage of frame correlation. The models obtained
can improve speech recognition performance, but they re-
quire a demoralizing increase in model parameters and
computational complexity. A smooth speech trajectory
can be generated by HMMs through maximization of the
model’s output probability under the constraints between
static and dynamic feature, modeling the temporal evolu-
tion of the acoustic models [5].

Therefore, a natural next step, given this previous re-
search, is to work on a framework for dealing with tempo-
ral and parameter dependencies while still working with
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regular HMMs, which can be done by using augmented
HMMs. Augmented statistical models have been pro-
posed previously as a systematic technique for modeling
additional dependencies in HMMs, allowing the repre-
sentation of highly complex distributions. Additional de-
pendencies are thus incorporated in a systematic fashion.
However, the price for flexibility is high, even when work-
ing with more computationally-friendly purposes [2].

The approach presented in this chapter consists of cre-
ating an augmented set of models, modeling temporal and
inter-parameter dependence.

3. N-GRAM MODELING

To better analyze the influence of temporal and param-
eter dependencies in recognition performance, both de-
pendencies can be modeled in an independent fashion.
Thus, a new set of acoustic models will be built for each
case without losing the scope of regular HMMSs. For both
cases, the most frequent combinations of features from
the MFCC-based parameterized signal will be selected
following either temporal or parameter dependence cri-
teria. Language modeling techniques should be used for
performing this selection. In this way, a new probability
space can be defined, to which the input signal will be
mapped, defining a new set of features.

In standard semi-continuous HMMs (SCHMMs), the
density function b;(x;) for the output of a feature vector
x; by state ¢ at time ¢ is computed as a sum over all code-
book classes m € M (see [1]):

bi(ee) =3 Com - plaem,i) = 3 cim - pladm) (1)
Now new weights should be estimated as there are
more features (inter-parameter dependencies or temporal
dependencies) to cover the new probability space. Also,
the posterior probabilities p(x|m) will be modified as
some independencies will no longer apply.
From this new set of features, regular SCHMM-based
training will be performed, leading to a new set of aug-
mented statistical models.

3.1. Modelling inter-parameter dependence

Let us assume that we work with four MFCC features:
cepstrum (fp), its first and second derivatives (f1,f2) and
the first derivative of the energy (f3). We can express
the joint output probability of these four features applying
Bayes’ rule:

P(fo, f1, f2, f3) = P(fo) P(f1|fo) P(f2|f1, fo) P(f3]f2; f1, fo)

2
where f; corresponds to each of the acoustic features
used to characterize the speech signal.
Assuming parameter independence, HMM theory ex-
presses equation 2 as:

P(fo, f1, f2, f3) = P(fo) P(f1)P(f2)P(f3) (3)

To overcome parameter independence, some middle
ground has to be found between equations 2 and 3. Thus,

instead of using all dependencies to express the joint out-
put probability, only the most relevant dependence rela-
tions between features are kept. For the spectral features,
we take into account the implicit temporal relations be-
tween features. For the energy, experimental results show
in a more relevant dependence on the first spectral deriva-
tive than to the rest. Thus, equation 2 is expressed as:

P(fo, f1, f2, f3) = P(fo) P(f1lfo) P(f2lf1, fo) P(fslf1)

In practice, not all the combinations of parameters
will be used for modeling each parameter dependence for
each P(f;), but only the most frequent ones. Taking into
account the parameter dependence restrictions proposed,
a basic N-gram analysis of the dependences in the training
corpus is performed, defining those most frequent combi-
nations of acoustic parameterization labels for each spec-
tral feature. That is, we will consider dependence between
the most frequent parameter combinations for each fea-
ture (considering 3-grams and 2-grams), and assume in-
dependence for the rest.

The input signal will be mapped to the new proba-
bility space. Recalling equation 1, we can redefine the
output probability of state 7 at time ¢ for each of the fea-
tures used as P;(fx), where fj, corresponds to each of
the acoustic feature used to characterize the speech sig-
nal. Then, the new output probability is defined as a sum
over all codebook classes m € M of the new posterior
probability function weighted by the new weights (taking
advantage of 2-grams and 3-grams):

Pi(fo) = ch,m -p(folm)
Pi(f1) = D clmmo - p(f1lm)
Pi(f2) = D Cmmomms - (f2lm)
Pi(fs) = > ¢ mum, - p(fslm)
where my = argmax p(fr|m)
is the likeliest class for parageter fx at state ¢ and time ¢.

The new weights are defined according to N-gram based

feature fombinatf'ons:

® C i = Cim if the 2-gram “j, m” is not defined

° c?’m’j?k = c?ym,j when the 3-gram “k, j, m” is not de-

fined, but it is defined the 2-gram “j, m”, and ¢?

iymagok T
c?ym when neither the 3-gram not the 2-gram are defined

° cf’,myj = cim when the 2-gram “j, m” is not defined

From these new output probabilities, a new set of HMMs
can be obtained, using a Baum-Welch training, and used
for decoding following the traditional scheme.

3.2. Modelling temporal dependencies

Next, we study the Markov assumption for the Markov
chain. It is generally expressed as:

P(5t|s§71) = P(s¢|st—1) )

where sﬁfl represents the state sequence sy, S, ..., S¢—1-
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Considering temporal dependences, equation 4 should
be reformulated. But, for simplicity, not all of the se-
quence of observations is taken into account, but only the
two previous ones for each observation s;, working with
the 3-gram s;_o,s¢—1,5¢. Then, equation 4 can be ex-
pressed as:

P(s¢|st™1) = P(s¢|s¢_2,5:1)
Applying independence among features (recall equation
3), the output proability of each HMM feature will be ex-
pressed as:

P(fl) = P(filfitfw fit—l)

Again, the most frequent combinations of acoustic pa-
rametrization labels can be defined, and a set of augmented
acoustic models can be trained. The output probability
(from equation 1) of state ¢ at time ¢ for each feature k
will be rewritten as:

R(fk) = Cﬁm,mk,t,l,mk,td p(fk|m) 5)

m

with M t—i = argmrgxp(fﬂm; t—1i)

Notice that if the 3-gram “my, o, Mk —1,m” does not
exist, the 2-gram or 1-gram case will be used.

4. EXPERIMENTS AND RESULTS

4.1. Methods and tools

For the experiments performed to test these approaches,
the semi-continuous [6] HMM-based speech recognition
system RAMSES [7] was used as reference ASR scheme,
and it is also used in this chapter as baseline for compari-
son purposes.

When working with connected digit recognition, 40
semidigit models were trained for the first set of acous-
tic models, with the addition of one noisy model for each
digit, each modeled with 10 states. Silence and filler mod-
els were also used, each modeled with 8 states. When
working with continuous speech recognition, demiphones
models were used. For the first set of acoustic models,
each phonetic unit was modeled by several 4-state left-to-
right models, each of them modeling different contexts.
In the augmented set of HMMs, each phonetic unit was
modeled by several models that modeled different tempo-
ral dependencies, also using 4-state left-to-right models.

Connected digits recognition was used as the first work-
ing task for testing speech recognition performance, as it
is still a useful practical application. Next, a restricted
large vocabulary task was tested in order to evaluate the
utility of the approach for today’s commercial systems.
Different databases were used: the Spanish corpus of the
SpeechDat and SpeechDatll projects and an independent
database obtained from a real telephone voice recognition
application, known as DigitVox, were used for the exper-
iments related to connected digits recognition. The Span-
ish Parliament dataset (PARL) of the TC-STAR project’

ITC-STAR: Technology and corpora for speech to speech transla-
tion, www.tc-star.org

was used for testing the performance of the models for
continuous speech recognition.

4.2. Results modeling parameter dependencies

In the first set of experiments we modeled parameter de-
pendencies. The different configurations used are defined
by the number of N-grams used for modeling the depen-
dencies between parameters for each new feature. In the
present case, no dependencies are considered for the cep-
stral feature, 2-grams are considered for the first cepstral
derivative and for the energy, and 2 and 3-grams for the
second cepstral derivative. As explained in section 3, as
we cannot estimate all the theoretical acoustic parameter
combinations, we define those N most frequent combina-
tions of parameterization labels for each spectral feature.
A low N means that only some combinations were mod-
eled, maintaining a low dimension signal space for quan-
tization. On the other hand, increasing N more depen-
dencies will be modeled at the risk of working with an
excessive number of centroids to map the speech signal.

Different configurations were tested. Each configura-
tion is represented by a 4-digit string with the different
values of N used for each feature. The total number of
codewords to represent each feature is the original acous-
tic codebook dimension corresponding to this feature plus
the number of N-grams used. The different combinations
that result in the configurations chosen were selected after
several series of experiments, defined to either optimize
recognition results or to simplify the number of N-grams
used.

database configuration SRR | WER
SpeechDat baseline 90.51 | 2.65
—/2000/2000,2000/2000 | 91.04 | 2.52
DigitVox baseline 93.30 | 1.27
—/2000/2000,2000/2000 | 93.71 | 1.17

Tabla 1. Connected digit recognition rates modeling

inter-parameter dependencies

In table 1 we present the best results obtained for con-
nected digit recognition experiments. Results are expressed
according to SRR (Sentence Recognition Rate) and WER
(Word Error Rate) to measure the performance. We can
see an important improvement in speech recognition for
this task using the SpeechDat dataset, with a relative WER
decrease of nearly a 5%. When using the DigitVox dataset
this improvement is slightly higher, with a relative WER
decrease of 7.8%. Because both datasets are independent
from the training datasets, we didn’t expect adaptation of
the solution to the training corpus.

4.3. Results modeling temporal dependencies

When modeling temporal dependencies, each new HMM
feature models the dependencies of the original acoustic
features. Again, the different configurations are repre-
sented by a 4-digit string with the number of N-grams

— 13—
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used in equation 5 for modeling each acoustic parame-
ter. In contrast to inter-parameter dependence modeling,
a wider range of N leads to an increase in recognition ac-
curacy. Thus, this is a more flexible solution, where we
can chose between optimizing the accuracy and working
with reasonable codebook size (close to the state-of-the
art codebooks when working with standard implementa-
tions) while still improving the recognition performance.

A first set of experiments using connected digit recog-
nition was used to analyze the evolution of recognition
performance regarding N, and also to study the differ-
ences in performance when testing the system with the
SpeechDat database or an independent database (DigitVox).
Results obtained with the SpeechDat dataset show that by
modeling time dependencies, we can achieve a great im-
provement in recognition, outperforming the inter-para-
meter dependencies modeling approach with a relative
WER reduction of around 26% compared to baseline re-
sults. However, the improvement when using the Dig-
itVox dataset was slightly lower, with a relative WER re-
duction of 10.2%. Thus, this solution seems more likely
to be adapted to the training corpus for connected digit
recognition.

To test whether time dependencies modeling works
better using a bigger (and wider) training corpus, contin-
uous speech recognition was used, with new sets of acous-
tic models based on demiphones, using the PARL dataset.
The results, presented in table 2 show a WER reduction
between 14.2% and 24.3%. We observe some saturation
in WER improvement when N is increased over certain
values: after reaching optimum values, WER improve-
ment becomes slower, and we should evaluate if the ex-
tra improvements really do justify the computational cost
of working with such large values of N (which means
working with high codebook sizes). Afterwards, addi-
tional WER improvement tends to zero, so no extra ben-
efit is obtained by working with a very high number of
N-grams. Thus a compromise between the increase in
codebook size and the improvement in recognition accu-
racy is made when deciding upon the best configuration.

configuration WER | WER,-
baseline 28.62 -
3240/2939/2132/6015 24.56 | 14.19%
7395/6089/4341/8784 27.73 | 24.07%
20967/18495/17055/15074 | 21.66 | 24.32%

Tabla 2. Continuous speech recognition rates modeling
time dependencies with TC-Star database

5. CONCLUSIONS

In this paper we present two approaches for using N-gram
based augmented HMMs. The first solution consists of
modeling the dependence between the different acoustic
parameters, thus overcoming the parameter independence

assumption. The second approach relies on modeling the
temporal evolution of the regular frequency-based fea-
tures, trying to break the time independence assumption.

Experiments on connected digit recognition and con-
tinuous speech recognition have been performed. The re-
sults presented show an improvement in recognition accu-
racy especially for the time dependencies modeling based
proposal. Therefore, it seems that time-independence is
a restriction for an accurate ASR system. Also, temporal
evolution seems to need to be modeled in a more detailed
way than the mere use of the spectral parameter’s deriva-
tives.

A more relevant improvement is achieved for contin-
uous speech recognition than for connected digit recog-
nition. For both tasks, independent testing datasets were
used in last instance. Hence, this improvement does not
seem to be related to an adaptation of the solution to the
training corpus, but to better modeling of the dependen-
cies for demiphone-based models. Thus, more general
augmented models were obtained when using demiphones
as HMM acoustic models.

Further work will be needed to extend this method to
more complex units and tasks, i.e. using other state-of-
the-art acoustic units and addressing very large vocabu-
lary ASR or even unrestricted vocabulary tasks.
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