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ABSTRACT 
 
This paper explores two alternatives for speaker verification 
using Generalized Linear Discriminant Sequence (GLDS) 
kernel: classical Support Vector Classification (SVC), and 
Support Vector Regression (SVR), recently proposed by the 
authors as a more robust approach for telephone speech.  In 
this work we address a more challenging environment, the 
NIST SRE 2008 multichannel core task, where strong 
mismatch is introduced by the use of different microphones 
and recordings from interviews.  Channel compensation based 
in Nuisance Attribute Projection (NAP) has also been 
investigated in order to analyze its impact for both 
approaches.  Experiments show that, although both techniques 
show a significant improvement over SVC-GLDS when NAP 
is used, SVR is also robust to channel mismatch even when 
channel compensation is not used.  This avoids the need of a 
considerable set of training data adapted to the operational 
scenario, whose availability is not frequent in general.  Results 
show a similar performance for SVR-GLDS without NAP and 
SVC-GLDS with NAP. Moreover, SVR-GLDS results are 
promising, since other configurations and methods for channel 
compensation can further improve performance. 
Index Terms: speaker verification, GLDS, SVM 
classification, SVM regression, inter-session variability 
compensation, robustness. 
 
 

1. INTRODUCTION 
 
Speaker verification aims at determining whether a given 
speech material of unknown source belongs to a claimed 
individual’s identity or not.  The state-of-the-art in speaker 
verification has been dominated in the last years by systems 
working at the spectral level.  Techniques like Gaussian 
Mixture Models (GMM) [1], Support Vector Machines (SVM) 
[2, 3], or hybrid approaches such as GMM-SVM [3] have 
demonstrated higher performance for this task. 

Among this kind of systems working at the spectral level, 
SVM Classification (SVC) using Generalized Linear 
Discriminant Sequence (GLDS) kernel has been used in the 
past [2].  This technique first maps the parameter vectors 
extracted from the speech to a high-dimensional space via a 
GLDS kernel function, where a SVM classifier is used to 
classify such speech as belonging to the claimed identity or to 
an impostor.  Thus, this task is essentially a binary 
classification problem. 

Another essential factor for the improvement of state-of-
the-art performance of the technology in the last years has 
been the use of session variability compensation schemes.  

Techniques like Factor Analysis [4] or Nuisance Attribute 
Projection (NAP) [5] have been critical for the robustness of 
systems under variation in the conditions of the speech.  
However, their ability to reduce inter-session variability 
effects is conditioned to the availability and correct use of 
appropriate databases similar to the data that the system will 
face in operational conditions.  Such databases may be hard to 
obtain in many applications. 

During the last years there have not been significant 
improvements in SVC-GLDS, so its performance is lower than 
other approaches at the spectral level such as GMM or GMM-
SVM.  Nevertheless, Support Vector Regression (SVR) has 
been recently proposed, showing a significant performance 
improvement over classical SVC for GLDS kernel in a 
telephone scenario [6].  Thus, it is necessary to study the 
performance of SVR-GLDS when facing more challenging 
environments in terms of session variability. 

In this paper we show experiments illustrating the 
robustness of the SVR-GLDS approach under strong session 
variability.  For this purpose we have used the NIST SRE 
2008 evaluation protocol where speech from different 
microphones and telephone networks is present with different 
languages and speaking styles.  This paper is organized as 
follows, SVM classification and regression is introduced in 
Section 2.  Section 3 presents the proposed SVR-GLDS 
system.  In Section 4, experiments showing the performance 
of SVC-GLDS and SVR-GLDS with and without session 
variability compensation are presented.  Finally, conclusions 
are drawn in Section 5. 

 
2. SUPPORT VECTOR MACHINE 

CLASSIFICATION AND REGRESSION 
 
SVM have been largely used for a wide range of different 
pattern recognition and machine learning tasks.  One of the 
main advantages of this technique is its good generalization 
capabilities to unseen data.  This fact joined to its 
computational efficiency establish SVM as a good candidate 
for tasks like speaker recognition, as has been demonstrated in 
[2, 3]. 

The approach for speaker verification using SVM in the 
past has been mainly based on SVC, where the classes are 
defined as the claimed speaker being the author of the test 
speech segment of unknown origin (target speaker hypothesis) 
or another individual being the author (non-target speaker 
hypothesis).  Recently, the authors proposed the use of SVR, a 
more general approach. 
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2.1. Support Vector Machine Classification (SVC) 
 
The goal of classification using support vector machines 
consists in finding and optimal decision hyperplane, 
represented by its normal vector w.  This is performed in a so-
called expanded feature space, where the MFCC (Mel 
Frequency Cepstral Coefficients) feature vectors are mapped 
in order to be easily separable [2]. The hyperplane w divides 
the high-dimensional space in two regions.  In our particular 
speaker verification problem one of these regions will 
correspond to the target speaker hypothesis and the other to 
the non-target speaker hypothesis.  The scoring function is 
then defined as the distance of each vector to the hyperplane: 

( ) ,i if x w x b  (1) 
where b is a learned offset parameter. To explain the SVM 
algorithm in more detail let consider the linearly separable 
case.  Suppose we have a data set labelled 

1 1 2 2, , , ,l lD x y x y x y  where ix  represent the vector 

and  the label.  For example  if iy 1iy ix  belong to the 
target speaker and  in the rest of cases.  The objective 
hyperplane in this case will be the one that maximize the 
margin between classes: 

1iy

1min
2

Tw w w   

subject to: 1 0i iy f x  
        Unfortunately, in real applications there are many effects, 
e.g. noise, channel effects, intra- and inter- class variability, 
etc., which can cause the restriction in (2) to be violated.  In 
such case, the problem will not be linearly separable.  This 
new problem can be solved by considering two different 
criteria for finding w: i) maximising the margin between 
classes and ii) minimising a loss function proportional to 
misclassified vectors.  A weighting factor C controls the 
relevance of one criterion against the other. 

,
1 1min
2

T
c iw w w C

m
 

subject to:  ,0 1c i i iy f x

      ,c i is a penalty associated to the vectors that do not satisfy 
the restriction in (2).  Thus, for classification problems the loss 
function is defined as: 

max 0,1loss i i if x y f x  (4) 

If a non-linear classification boundary is desired, an 
elegant method consists in mapping each vector to a higher-
dimension feature space.  For this purpose a map function, 

ix , is used.  It can be demonstrated that we can obtain a 

transformation ix  where the vectors are linearly separable. 
Furthermore, the SVM algorithm only requires inner products 
of the vectors in the expanded space, ( ), ( )i jx x , where the 

kernel function is defined as: 
, ( ), (i j i jk x x x x )  (5) 

The possibility of computing the inner products without 
explicitly mapping each vector into the high dimensional 
space is known as kernel trick. 

 
 
 
 

2.2. Support Vector Machine Regression (SVR) 
 
As shown before, the objective of SVC was to find an optimal 
hyperplane witch separates the target and nontarget data.  In 
the SVR case the goal is more general: learning a n-
dimensional function based on the data. 

The vector labels, , are seen as a function of iy ix , 
( )n i ig x y .  SVR will try to find a function .  The 

degree of approximation to the function  is controlled 
through the parameter C. 

( ) ( )nf g
( )ng

The main difference between SVC and SVR is the loss 
function.  SVC penalizes the situation where , but 
as SVR aims at estimating a function, it also penalizes 

( ) ( )nf g

( ) ( )nf g .  The loss function should consider such effect, 
and there are different options in the literature.  A popular 
choice is the -insensitive loss function [7], where vectors are 
penalized when ( ) ( )nf g . The objective hyperplane in 
the SVR case will then be: 

'
, ,

1 1min
2

T
c i c iw w w C

m
 

(6) 
subject to: ,

'
,

0
0

i i c i

i i c i

f x y
y f x

 

If we compare these criteria with SVC in Equation (3), we 
observe some differences.  We have the SVC penalty variable, 

,c i , for those vectors for which ( ) ( )i n if x g x , and a 

new variable '
,c i  for those ones for which ( ) ( )i n if x g x . 

The loss function is then defined as: 

(2) 

' max 0,loss i i if x y f x  (7) 

The differences between '
loss if x  (SVR) and loss if x  

(SVC) are shown in Figure 1. The loss functions are centered 
at i( )if x y  for SVC and at ( ) ( )i n if x g x  for SVR. 
 

 

(3) 

(a) 

 
(b) 

Figure 1. SVR vs. SVC. Boundaries (a) and loss functions (b). 

— 16 —

V Jornadas en Tecnología del Habla



3. SVR-GLDS SPEAKER VERIFICATION 
 

We propose to use SVR with a -insensitive loss function for 
the speaker verification task.  Recently, the authors showed 
the performance of this novel approach over the core task of 
NIST SRE 2006 [6], a telephone scenario, obtaining good 
results in comparison with SVC. 

One of the main consequences of using the SVR approach 
in the GLDS space relates to the use of support vectors for 
SVM training.  SVC uses support vectors which are near the 
frontier between classes, where the vectors use to be scarce.  
SVR selects support vectors from areas where there is a higher 
concentration of vectors.  Thus, the SVC hyperplane may be 
more sensitive than SVR to outliers, noisy vectors, etc.  In this 
sense, SVR can present a more robust performance than SVC 
against outlier support vectors due to extreme conditions in 
some speech utterances. 

Another advantage of the SVR approach relies on the use 
of the  parameter.  There are some works in the literature [8] 
that relate the  parameter to the noise or variability of the 
function estimate.  Following such assumptions, tuning   
allows us to adapt the SVR training process to the variability 
in the expanded feature space. 

 
4. EXPERIMENTS 

 
4.1. SVM-GLDS systems 
 
Both ATVS SVC-GLDS and SVR-GLDS systems are based 
on a GLDS kernel as described in [2].  Feature extraction is 
performed based on audio files processed with Wiener 
filtering (an implementation is available at 
http://www.icsi.berkeley.edu/ftp/global/pub/speech/papers/qio
).  19 MFCC plus deltas are then extracted.  In order to avoid 
channel mismatch effects, CMN (Cepstral Mean 
Normalization), RASTA filtering and feature warping are 
performed.  A GLDS kernel expansion is performed on the 
whole observation sequence, and a separating hyperplane is 
computed between the training speaker features and the 
background model.  The system uses a polynomial expansion 
of degree three prior to the application of the GLDS kernel.  

In order to face the problem of session variability, speaker 
vectors obtained after calculating the expanded feature vector, 
were channel compensated.  The compensation was performed 
by projecting out its expanded values into a trained channel 
subspace, which is known as NAP [5].  The score computation 
is based on the distance of the expanded features to the 
separating hyperplane, as shown in (1).  Finally, the T-Norm 
[9] score normalization technique is applied.  We have used 
the LibSVM library 
(http://www.csie.ntu.edu.tw/~cjlin/libsvm) for training both 
SVM classification and regression algorithms. 
 
4.2. Databases and experimental protocol 
 
Experiments have been performed using the NIST Speaker 
Recognition Evaluation (SRE) 2008 [10].  These evaluations 
are the main forum for the improvement of the technology 
performance of speaker recognition systems.  Each new NIST 
evaluation involves a new challenge to the science 
community, contributing to increase the efforts and research 
works in the speaker verification field, and fostering common 
testing and comparison protocols. 

The main difference of NIST SRE 2008 with previous 
evaluations consists in including in the training and test 

conditions for the core task not only conversational telephone 
speech data but also conversational speech data recorded over 
a microphone channel involving an interview scenario, and 
additionally, for the test condition, conversational telephone 
speech recorded over a microphone channel.  The evaluation 
protocol defines the following training conditions: 10 seconds, 
1 (short2), 3 and 8 conversation sides and long conversation; 
and the following test condition: 10 seconds, 1 (short3) 
conversation side and long conversation.  Each “short” 
conversation, either recorded over a telephone or a 
microphone, has an average duration of 5 minutes, with 2.5 
minutes of speech on average after silence removal.  Interview 
segments contain about 3 minutes of conversational speech 
recorded by a microphone, most of the speech generally 
spoken by the target speaker.  Although there are speakers of 
both genders in the corpus, no cross-gender trials are defined.  
In our case the experiments followed the core task, namely 
short2 training conditions, and short3 test condition (short2-
short3).  

Taking into account the test and train channel types, the 
evaluation protocol can be divided in 4 conditions: tlf-tlf 
(37050 trials), tlf-mic (15771 trials), mic-mic (34046 trials) 
and mic-tlf (11741 trials).  NIST made available for the 
participants the type of channel (microphone or telephone) for 
each speech segment. 

The background set for system tuning is a subset of 
databases from previous NIST SRE, including telephone and 
microphone channels.  The T-Norm cohorts were extracted 
from the NIST SRE 2005 target models, 100 telephone models 
and 240 microphone models.  NAP channel compensation was 
trained using recordings belonging to NIST SRE 2005 
speakers which are present in both telephone and microphone 
data. 
 
4.3. Results 
 
The performance of SVC-GLDS is first evaluated with two 
different configurations: i) without including any 
compensation technique, and ii) including a NAP 
compensation scheme.  Table 1 shows the performance of the 
system detailed per condition.  Results are presented both as 
Equal Error Rate (EER) and DCFmin as defined by NIST [10].  
It is observed that the performance of the system significantly 
improves when NAP is added to the system, both for EER and 
DCF values.  The improvement is bigger when strong channel 
mismatch occurs (tlf-mic or mic-tlf conditions). 
 

 SVC-GLDS SVC-GLDS + NAP 
 EER (%) DCFmin EER (%) DCFmin

tlf-tlf 13.8 0.054 10.2 0.047 
tlf-mic 24.1 0.075 13.9 0.053 
mic-mic 17.4 0.075 13.0 0.057 
mic-tlf 23.5 0.078 15.3 0.059 
Table 1. EER and DCFmin in NIST SRE 2008 short2-short3, for 

SVC-GLDS. 
 
In order to use the proposed SVR-GLDS system, tuning 

the  parameter is firstly required, and the variation of its 
performance with respect to such parameter is presented here. 
As we saw in [6] the system performance significantly 
changes as a function of this parameter.  In that case  
was the optimal value.  Tables 2 and 3 show the performance 
for different values of . 

0.1
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 0.05 0.1 0.2 0.4 0.8 
tlf-tlf 9.9 10.0 10.9 13.5 13.9 
tlf-mic 16.9 15.1 16.6 23.8 24.0 
mic-mic 15.7 15.4 15.9 16.8 17.4 
mic-tlf 17.0 16.4 18.8 22.8 23.6 
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SVC:               EER = 20.1%; DCF = 0.081
SVC + NAP:    EER = 13.7%; DCF = 0.066
SVR:               EER = 15.7%; DCF = 0.074
SVR + NAP:    EER = 14.9%; DCF = 0.072

Table 2. EER in NIST SRE 2008 sort2-sort3, for different values 
of  in SVR-GLDS. 

 
 0.05 0.1 0.2 0.4 0.8 

tlf-tlf 0.046 0.045 0.047 0.052 0.054 
tlf-mic 0.059 0.055 0.063 0.074 0.075 
mic-mic 0.064 0.065 0.067 0.074 0.075 
mic-tlf 0.063 0.064 0.066 0.078 0.078 

Table 3. DCFmin in NIST SRE 2008 sort2-sort3, for different 
values of  in SVR-GLDS. 

 
In most part of the cases  significantly improves 

the system performance.  Thus we just have to tune the system 
one time and not for each one of the four conditions.  For the 
rest of experiments  will be used for SVR. 

0.1

0.1
Finally, we have evaluated the performance of SVR-

GLDS + NAP versus the systems mentioned above: SVC-
GLDS, SVC-GLDS + NAP and SVR-GLDS.  Table 4 shows 
the comparison in EER and DCF values for each condition 
and Figure 2 shows the global DET curves of the systems. 

 
  tlf-tlf tlf-mic mic-mic mic-tlf 

EER 13.8 24.1 17.4 23.5 SVC 
DCFmin 0.054 0.075 0.075 0.078 
EER 10.2 13.9 13.0 15.3 SVC+

NAP DCFmin 0.047 0.053 0.057 0.059 
EER 10.0 15.1 15.4 16.4 SVR 
DCFmin 0.045 0.055 0.065 0.064 
EER 9.6 14.3 13.8 15.0 SVR+

NAP DCFmin 0.045 0.053 0.060 0.062 
Table 4. EER (%) and DCFmin. performance of SVC, SVC + NAP, 

SVR and SVR + NAP systems in NIST SRE 2008 short2-short3 
task. 

Figure 2. DET curve of SVC, SVC + NAP,  SVR and SVR + NAP 
systems in NIST SRE 2008 short2-short3 task. 

 
The system with the best performance is SVC-GLDS + 

NAP, obtaining a relative improvement in EER of 31% and 
19% in DCF value.  The proposed system, SVR-GLDS, 
presents a similar performance before and after channel 
compensation.  This has the advantage that there is no need of 
using NAP to obtain similar performance as SVC-GLDS + 
NAP.  If a suitable database is available, NAP may 
significantly improve the performance of the system, but if 
such database is not available or the representative data is 
scarce, SVR-GLDS seems a convenient option for obtaining 
robustness.  The latter may be the case in many applications. 

Moreover, SVR-GLDS + NAP provides a slight 
improvement, in both EER and DCF values, with respect to 
SVR-GLDS.  This result is promising, as no special tuning of 
the  parameter has been performed. As the NAP 
transformation changes the properties of the expanded space, a 
finer determination of  may possibly lead to a further increase 
in performance. 

 
5. CONCLUSIONS 

 
In this paper we have explored the performance of SVR-
GLDS for speaker verification, recently proposed by the 
authors, over the NIST SRE 2008 core multichannel task.  
This technique is a more general and robust approach than the 
widely-used SVC-GLDS.  Results show that the performance 
of the SVR-GLDS approach without channel compensation is 
comparable to SVC-GLDS with NAP. Therefore, if a suitable 
database is available, NAP may significantly improve the 
performance of the system, but if such database is not 
available or the representative data is scarce, SVR-GLDS 
seems a more convenient option for obtaining robustness. 
Moreover, since channel compensation requires a sizeable 
amount of data, in many real applications SVR may seem an 
attractive option for robustness.  Furthermore, it is possible to 
combine SVR-GLDS with channel compensation, which 
further improves SVR-GLDS performance showing promising 
results.  

Future work includes the use of different SVR approaches 
for the GLDS space, such as -SVR, non-linear loss functions 
and different kernels. Also, the combination of SVR with 
NAP, tuning the  parameter and its effects on the system 
performance will be investigated in depth. 
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