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ABSTRACT 

 
This paper describes the development of a command-
based robust speech recognition system for the 
Portuguese language. Due to an efficient noise reduction 
algorithm the system can be operated in adverse noise 
environments such as in vehicles or factories. The 
acquisition of a Portuguese database in the scope on the 
Tecnovoz project is addressed in this paper. The paper 
also describes a new noise-robust front-end and some 
experiments regarding the best acoustic model to use for 
a command-based speech recognizer. Results with 
whole-word, monophone and triphone models are 
presented and discussed. 

1. INTRODUCTION 
 

Tecnovoz [1] is a shared-cost project funded by the 
Portuguese government which aims to create a body of 
knowledge on voice technologies, particularly to the 
Portuguese language. This will materialize in a series of 
products for the market. The authors were responsible in 
the framework of the project for the development of a 
speech independent connected word recognizer which 
operates under noise adverse conditions, such as 
factories and vehicles. Therefore it has to incorporate 
advanced noise reduction techniques. Finally, the 
recognizer has to be computationally efficient in order to 
operate on small footprint embedded hardware 
platforms. 

The speech database was collected in the scope of 
the Tecnovoz project. It has been designed regarding 
typical application demands, in terms of vocabulary and 
acoustic environments. The acoustic models are based 
on Hidden Markov Models (HMMs).  

In order to deal with noise adverse conditions, a 
noise reduction front-end was designed, based on the 
Advanced Front-End (AFE) ETSI Standard [2]. Some 
modifications were made from the standard to enhance 
the performance and speed of the speech recognizer. 

In order to improve the robustness of the speech 
recognizer, several experiments with different acoustic 

models were carried out using either whole-word HMM 
models or smaller unit HMM models, such as 
monophones and triphones. 

The paper is organized as follows. In section 2 the 
database is described. Section 3 describes the front-end 
implementation. Section 4 refers to the approaches to 
the acoustic modelling. Finally, in section 5, results 
obtained with different acoustic models and front-end 
configurations, are presented. 

 
2. SPEECH DATABASE 

 
Three acoustical environments were considered 

during the database acquisition, namely: clean (TVFL), 
vehicle (TVV) and factory (TVF) environments. The 
collected speech database includes about 250 commands 
and several phonetically rich sentences. About 30 
minutes of spoken content were recorded by each of the 
368 speakers, which turn into about 184 hours of speech 
content and a total of 232,000 files. Table 1 and Table 2 
show the distribution of the database according to 
gender and file types, respectively.  

 
Gender TVFL TVF TVV 
Female 103 20 9 
Male 197 16 23 

 
Table 1: Gender distribution. 

 
Content TVFL TVF TVV 
Words 141,992 30,090 19,648 

Sentences 40,458 − 384 
 

Table 2: Speech file distribution. 
 

3. FEATURE EXTRACTION 
 

The feature extraction system is based on the AFE 
standard, which incorporates a two-stage Wiener 
filtering system. In this standard, the Wiener filter is 
estimated in the linear frequency domain and is 
implemented by a time domain convolution. Li et al, [3], 
proposed a new algorithm where both filter estimation 
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and operation are carried out in the Mel frequency 
domain. In our implementation some changes were made 
to Li et al approach in order to improve the front-end 
efficiency, as depicted in Figure 1 [4]. 
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Figure 1: Block diagram of the feature extraction 

system. 
 

It can be seen that the speech signal is processed 
by a two-stage Wiener filter as in the ETSI standard. 
The estimated signal spectrum is applied to a Mel filter-
bank and the frames are then classified as “noise only” 
or “speech with noise” by the VADNest block. The 
Wiener filter design depends on this classification in 
order to estimate the noise spectrum. The “Spectral 
Smooth” block presents some modifications: the 
operations involved in the smoothing of the Wiener 
filter coefficients were reduced to a single matrix 
multiplication [4]. Apart from the gain factorization 
block, that were not found valuable for the final system 
performance, the second Wiener filter stage is similar to 
the one proposed in [3]. 

The de-noised frames are then converted to 
cepstral coefficients by a discrete cosine transform 
(DCT) and their means are normalized by a real-time 
algorithm, resulting on a feature vector with 39 
components, comprising 12 cepstral coefficients plus log 
energy and their first and second time derivatives. The 
feature extraction algorithm is described in detail in [4]. 

 
4. MODEL TRAINING 

 
Acoustic models were built using the Tecnovoz 

speech database and only files corresponding to 
command utterances with Signal-to-Noise Ratio above 
15 dB were considered. There were a total of 137,860 
files (120,459 from TVFL, 8,760 from TVF and 8,641 
from TVV). From these files 75 % were picked for 
training, 20 % for test and 5 % for development. From 
the first trained models a recognition test was performed 
on the training database. The results allow us to detect 
transcription errors, and consequently, some annotation 
files had their marks re-adjusted, others were deleted 
and wrong labels were changed according to the word 
effectively pronounced. From these procedures the total 
number of files was reduced to 137,237 (119.975 from 
TVFL, 8,633 from TVF and 8,629 from TVV). 

The model training was carried out using the HTK 
toolkit [5]. During the training three approaches were 
explored for the acoustic models: word-level, context-
free phones and context-dependent triphones. The word-
level approach tries to create HMM models for the 
whole-word, whereas context-free monophone models 
split the words into the corresponding monophone 
transcription to provide data for monophone training. 
Finally, triphone training tries to profit from left and 
right contexts of each phone, which naturally influence 
the acoustic realization of each phone, to create a new 
model. The advantages and disadvantages of each 
method will be discussed in the next sub-sections. 

 
4.1. Word-level training 

 
For word-level training, each of the 254 words is 

represented by an HMM with left-to-right topology. The 
number of states of the HMM depends on the word 
length in terms of phones. For example for the command 
“stop”, the transcription is /s t O p/ (in SAMPA), which 
results in a 12-state HMM for this word, using 3 states 
for each phone. 

The models “ruido” and “sil” are used to model 
noise and silence, respectively. They are represented 
with 3-state HMM’s with left-to-right topology with an 
extra transition from the first to the last emitting states 
and vice-versa. 

The model initialization was done with the HTK 
tools HInit and HRest. Afterwards, the training was 
carried out with the embedded re-estimation HTK tool 
HERest. Word-level models were trained with mixture 
increment, up to 10 Gaussian mixtures for each state. 

 
4.2. Monophone training 
 

The first step consisted in defining the phone set 
for the Portuguese language.  A list of 40 phones was 
taken, including models for silence and pause. All phone 
HMMs have 3 states with a left-to-right topology and 
were initialized with the “flat start” method [5]. Multiple 
pronunciations were considered for some words, which 
permitted to realign the training data after 5 iterations of 
embedded re-estimation. The number of mixture 
components was then incremented up to 16 Gaussians, 
as depicted in Figure 2. 

 
4.3. Triphone training 

 
Triphones depends on the two adjacent phones, 

which gives considerable robustness to variations in 
pronunciations in specific contexts [6]. 

Since there is no annotated speech data at phone 
level, monophone models were used (initialized with the 
flat start procedure) to develop the intra-word triphone 
models. As triphones are phones with context, it was 
used a straightforward procedure to convert from one 
notation to another (e.g.: “dez” (“ten”) → /d E S/ → 
/d+E d-E+S E-S/). 
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Figure 2: Monophone training procedure. 
 

The resulting number of triphone models is 872 for 
the command vocabulary. This results in much less 
training material for each triphone compared with 
monophones. To overcome this problem and taking into 
consideration that there are many similar triphones in the 
model list, some models can be tied in order to reduce 
the total number of physical models. For this purpose 
two methods were considered: data-driven clustering 
(DDC) and tree-based clustering (TBC). The data-driven 
clustering uses a similarity measure between HMM 
states, while tree-based clustering builds a binary 
decision tree. This tree attempts to find those contexts 
which make the largest difference to the acoustics and 
which should therefore distinguish clusters. The latter 
method has the advantage of accommodating the 
construction of systems which have used unseen 
triphones [5]. Different likelihood thresholds in TBC 
and distance thresholds in DDC were taken into account 
as sources of variability in training. These thresholds 
have a strong influence on the number of physical 
models that need to be trained, and consequently in the 
total number of Gaussians, which is a major concern as 
recognizer will be working over low performance 
hardware. The number of Gaussians was incremented up 
to 16, as depicted in Figure 3. 

 

 
 

Figure 3: Triphone training procedure. 

5. RESULTS 
 

In this section, the results obtained with each 
acoustic modeling approach are presented. Tests were 
carried out using the HTK decoder tool HVite. 

To perform the experiments, a task grammar must 
be defined in order to provide information about the 
sequence of events that can be found in the test 
utterances. The used grammar consisted in taking all the 
command words in parallel, with an optional silence 
before and after a command, as shown in Figure 4. 

 

 
 

Figure 4: Task grammar. 
 

Table 3 shows the achieved recognition rates of 
both the original and proposed front-ends in terms of the 
Word Correctness rate. The improvements made at the 
front-end level resulted in a system’ performance 
improvement of about 2% (absolute points). This result 
suggests that the ETSI’s AFE may be biased towards the 
database used for the evaluation of the algorithm (the 
Aurora 2 database). 

 
Front-End Word Correctness 

Original ETSI AFE 94.88 % 
Efficient Front-end (E-AFE) 96.88 % 

 
Table 3: Comparison between AFE and E-AFE. 

 
Three different versions of the whole-word models 

were tested. The first one corresponds to the models 
created with the first alignment of the training database 
(V1). The models’ second version resulted from the new 
label files with re-adjusted marks (V2). The third one 
was created with a modification in the front-end, that 
consists in removing the gain factorization block, 
indicated in Figure 1 (V3). Results for 8 Gaussian 
mixtures are presented in Table 4. As expected, the 
consecutive modifications made on training procedure, 
label files and front-end improved the whole-word 
models. 

 
Version Word Correctness 

V1 95.92 % 
V2 96.55 % 
V3 96.76 % 

 
Table 4: Whole-word models results. 
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As referred to in section 4.2, the label files were 
automatically aligned several times, in order to improve 
robustness. Table 5 shows the word correctness for 
monophone models, with 8 Gaussian mixtures, for 
several realignment iterations. Besides the low rates 
obtained with the monophone models, an improvement 
of 6 % was observed by realigning the training data 3 
times. 

 
Number of Realignments Word Correctness 

0 83.46 % 
1 87.57 % 
2 87.54 % 
3 89.28 % 

 
Table 5: Monophone models results. 

 
To evaluate triphone model performance, 

experiments were carried out with no clustering and with 
both clustering methods. Results obtained with 8 
Gaussian mixture models are presented in Table 6. 

 
Clustering 

Method 
Threshold Word Correctness 

TBC 7500.0 96.06 % 
TBC 1000.0 97.03 % 
TBC 300.0 97.06 % 
DDC 0.3 96.81 % 

No clustering − 97.03 % 
 

Table 6: Triphone models results. 
 

Results indicate that the lower the thresholds in 
TBC, the better are the results. This is due to the number 
of physical models resulting from the cluster which is 
higher when the likelihood threshold is lower. With 
about the same number of physical models, the DDC 
clustered models presents a slightly lower score. 
Nevertheless, the clustering method seems to be useless, 
since with no clustering a very similar recognition rate is 
achieved. 

In order to compare the performance of the three 
acoustic model types,  the best score from each approach 
is presented in the same table as well as the number of 
Gaussians that the ensemble of models have. According 
to Table 7, the triphone models have the best 
performance, comparing to whole-word or monophone 
models. As the recognizer should work on low 
performant hardware, a trade-off between computational 
load (dependent on the number of Gaussians), and the 
recognition rate should be made. The triphone models 
not only have less computational load when compared to 
whole-word models, as achieve higher recognition rate. 
As a result, most commands in the vocabulary are 
represented by triphone models in our recognition 
engine. Only smaller commands, where whole-word 
models seem to be more accurate, use this kind of 
models. 

Acoustic Model 
Word 

Correctness 
Total Number 
of Gaussians 

Whole-word 96.76 % 37,344 
Monophone 89.28 % 952 

Triphone 97.03 % 16,204 
 

Table 7: Comparison of acoustic models. 
 

6. CONCLUSIONS AND DISCUSSION 
 

In this paper some modifications are proposed to 
the ETSI’s AFE regarding noise robustness of a 
command-based speech recognition system for the 
Portuguese language. The new proposal outperformed 
the ETSI standard in about 2%.  

Three different acoustic models (whole-word, 
monophone and triphone models) were also tested and 
compared. Results show that triphone models achieved 
the best performance.  

Another interesting conclusion is that new word 
models can be easily built using the monophone models. 
The user just need to add the sequence of phones that 
compose a new command in order to be accepted by the 
recognizer engine. With triphones it is not that simple, 
because only a small set of triphones are available. An 
algorithm that associates to an unseen triphone the better 
one that is already on the initial triphone list is currently 
being developed. This tying takes into account acoustic 
and phonetic similarities between triphones. With this 
association the recognizer will be prepared to recognize 
any command. 
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