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ABSTRACT

This paper presents the UPC TTS system named Og-
mios. Ogmios is a system based on unit-selection using
acoustic and phonetic features both in target and concate-
nation costs.

Most of the modules of Ogmios rely on data driven
techniques. It has been an useful approach to generate
voices in many languages, such as Spanish, Catalan, UK
English, and Mandarin Chinese.

1. INTRODUCTION

This paper describes Ogmios, the UPC Text-to-Speech
system used for the evaluation. The system was originally
designed for Spanish and Catalan but has been extended
to English and Mandarin [1, 2]. This paper is organised
as follows: Section 2 describes the system and Section 3
explains the process of building the voices.

2. SYSTEM DESCRIPTION

2.1. Text and Phonetic Analysis

The first task of the system is to detect the structure of
the document and to transform the input text into words.
For this task we have used rules for tokenizing and clas-
sifying non-standard words in Spanish. The rules for ex-
panding each token into words are language dependent,
but are based in a few simple functions (spellings, natural
numbers, dates, etc.) by means of regular expressions.

The second process is the POS tagger. Ogmios in-
cludes a statistical tagger based on FreeLing. The FreeL-
ing package consists of a library providing language anal-
ysis services. Main services used of FreeLing library are
PoS tagging and probabilistic prediction of unknown word
categories. Freeling provides services for all currently
supported languages: Spanish, Catalan, Galician, Italian,
and English [3].

2.1.1. Phonetic Transcription

The goal of the phonetic module is to provide the pronun-
ciation of the words. This is used not only for produc-
ing the test sentences but also for transcribing the training
database which is used for building the voices.

For Spanish the pronunciation of each word is based
on a set of rules that take into account the transcription
rules of Spanish and phonotactics.

Some particular words are transcribed using a lexicon,
specially foreign words, abbreviations and signs.

2.2. Prosody

Prosody generation is done by a set of modules that se-
quentially perform all the tasks involved in prosody mod-
elling: phrasing, duration, intensity and intonation.

2.2.1. Phrasing

Phrasing is one of the key topics in the linguistic part
of text-to-speech technologies and consists of breaking
long sentences into smaller prosodic phrases. Boundaries
are acoustically characterised by a pause, a tonal change,
and/or a lengthening of the last syllable. Phrase breaks
have strong influence on naturalness, intelligibility and
even meaning of sentences.

In Ogmios phrasing is obtained using two algorithms.
The first algorithm consists in a Finite State Transducer
that translates the sequence of part-of-speech tags of the
sentence into a sequence of tags with two possible values:
break or non-break [4]. This uses the same tool which
was used for the grapheme-to-phoneme task: x-grams [5].
The method uses very few features, but the results are
comparable to CART using more explicit features.

The second algorithm predicts phrase break bound-
aries combining a language model of phrase breaks [6]
and probabilities of phrase breaks given contextual fea-
tures [7]. Phrase break boundaries are found by maximiz-
ing the following equation:

J(C1,n) = argmaxj1,n

n∏

i=1

P (ji|Ci)
P (ji)

P (ji|ji−k,i−1)

(1)
The latest algorithm was chosen in this evaluation for

Spanish due to its better subjective performance in train-
ing data.

2.2.2. Duration

Phone duration strongly depends on the rhythmic struc-
ture of the language. For example, English is stressed-
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timed while Spanish is syllable-timed. Ogmios predicts
phone duration with a two steps algorithm: prediction of
the suprasegmental duration (syllable or stress unit), and
then phone duration is predicted by factoring the supraseg-
mental duration.

The suprasegmental duration is predicted using CART.
Features include the structure of the unit, represented by
articulatory information of each phoneme contained in it
(phone identity, voicing, point, manner, vowel or conso-
nant), stress, its position in the sentence and inside the
intonation phrase, etc.

Once the duration of the suprasegmental unit is cal-
culated, the duration of each phoneme is obtained using
a set of factors to distribute suprasegmental duration over
its constituent phonemes. These factors are predicted us-
ing CART with a set of features extracted from the text,
such as articulatory information of the phoneme itself and
the preceding and succeeding ones, position in the unit, in
the word and in the sentence, stress, and whether the unit
is pre-pausal.

2.2.3. Intensity

The intensity of the phonemes is predicted by means of a
CART. Features are again articulatory information of the
actual, preceding and succeeding phone, stress, and the
position in the sentence relative to punctuation and phrase
breaks.

2.2.4. Intonation

Ogmios has two available intonation models: a superpo-
sitional polynomial model trained using JEMA (Join fea-
ture Extraction and Modelling Approach [8]), and a f0
contour selection model. In some cases, using the super-
positional approach results in over-smoothed intonation
contours with a loss of expressiveness.

Thus, in this evaluation we generate the f0 contour us-
ing the selection approach [9]. For each accent group we
select a real contour from the database taking into account
the target cost (position in the sentence, syllabic struc-
ture, etc.) and the concatenation cost (continuity). The
selected contour is represented using a 4th order Bezier
polynomial. The contour is generated using this polyno-
mial, once the time scale is adapted to the required du-
rations. The final result is a more expressive intonation
contour than the JEMA model. However, in some cases,
the contour is not adequate for the target sentence due to
natural language understanding limitations of TTS sys-
tems.

2.3. Speech Synthesis

Our unit selection system runs a Viterbi algorithm in or-
der to find the sequence of units u1 . . . un from the inven-
tory that minimises a cost function with respect to the tar-
get values t1 . . . tn. The function is composed by a target

and a concatenation cost: both of them are computed as a
weighted sum of individual sub-costs as shown below:

C(t1 . . . tn, u1 . . . un) = wt

n∑

i=1




Mt∑

m=1

wt
mCt

m(ti, ui)





+ wc

n−1∑

i=1

(
Mc∑

m=1

wc
mCc

m(ui, ui+1)

)

where wt and wc are the weights of the global target
and concatenation costs (wt +wc = 1); M t is the number
of the target sub-costs and M c the number of concatena-
tion sub-costs; Ct

m(.) is the m th target sub-cost which is
weighted by parameter wt

m; and Cc
m(.) is the m th con-

catenation sub-cost weighted by wc
m.

Tables 1 and 2 show the features used for defining the
sub-cost functions. There are two types of sub-costs func-
tions. Binary, which can only have 0 or 1 values, and con-
tinuous. For continuous sub-costs functions, a distance
function is defined and a sigmoid function is applied in
order to restrict their range to [0 − 1].

To adjust the target weights, we applied a similar ap-
proach to the one proposed in [10]. For each pair of units,
we compute their distance using feature vector (MFCC,
f0, energy) taken every 5 msec. Let d be the vector of all
distances for each pair of units, C a matrix where C(i, j)
is sub-cost j for unit pair i and w the vector of all weights
to be computed. If we assume Cw = d then it is possi-
ble to compute w as a linear regression. In other words,
the target function cost becomes a linear estimation of the
acoustic distance. The weights of the concatenation sub-
costs functions were adjusted manually.

phonetic accent B
duration difference C
energy difference C
pitch difference C
pitch diff. at sentence end C
pitch derivative difference C
pitch deviate sign is different B
accent group position B
triphone B
word B

Tabla 1. Target costs: B stands for binary cost and C for
continuous cost.

energy C
pitch C
pitch at sentence end C
spectral distance at boundary C
voice-unvoiced concatenation B

Tabla 2. Concatenation costs: B stands for binary cost
and C for continuous cost.
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Concerning the waveform generation process, in our
experience, listeners assign higher quality scores to the
synthetic utterances where the prosodic modifications are
minimal. Thus, most of the units selected for generat-
ing synthetic speech are simply concatenated using glottal
closure instant information, without any prosodic manip-
ulation. Therefore, the use of the information provided
by the prosody generation block is restricted to the unit
selection process.

3. BUILDING THE ALBAYZIN VOICE

Once the normalization and phonetic transcription rules
are ready (section 2.1), our system is able to build a new
voice automatically from the audio files and their corre-
sponding prompts. This automatic procedure consists of
four main steps: automatic segmentation of the database,
training of the prosodic models, selection weights adjust
plus database indexing. The prosody training and the se-
lection weights adjust procedures have been described in
previous sections. Therefore, in the present section, we
will describe the segmentation process and the database
indexing.

Once the database was supplied we built the unit in-
ventory. In our system, the units are context dependent
demiphones. However, the selection algorithm forces the
use of diphones imposing a high cost in phone transitions.
The database is automatically segmented into phones by
means of the HMM-based aligner named Ramses [11].
We used the front-end described in section 2.1 to auto-
matically transcribe the whole database into phones.

Afterwards, we trained a different set of context de-
pendent demiphone HMM models from each data set, cor-
responding to each of the three voices. The phone bound-
aries are determined using a forced alignment between the
speech signal and the models defined by the phonetic tran-
scription. A silence model, trained at punctuation marks,
was optionally inserted at each word boundary during the
alignment. In addition, the detected silences are also used
for the pause prediction model (see Section 2.2).

Previous experiments have shown that when a correct
phonetic transcription is given, HMM models can achieve
similar speech synthesis quality than manual segmenta-
tion [12, 13]. Therefore, additional effort was devoted to
phonetic transcription and database pruning to obtain cor-
rectly segmented voices, as show in the following para-
graphs.

Automatic phonetic transcription of a speech synthe-
sis database has to cope with pronunciation variants, pro-
nunciation errors and recording noise. In order to over-
come the former problem, the alignment took into account
all possible transcriptions of a single word. At this point,
the alignment may have errors either because there is a
mismatch between front-end and speaker production or
because there is an alignment error.

We assume that wrong units will never represent a
big portion of the database and that it is affordable to re-

ject such part of it. Therefore we tried to detect unde-
sired units in order to remove them from the inventory by
means of a pruning procedure. After computing the align-
ment likelihood for every unit, 10% of them, those with
worst scores, were removed. Previous experiments have
shown that it is possible to remove 90% of wrong units by
means of this pruning procedure [14].

In this evaluation we do not include any pruning due
to the small amount of data provided to generate the syn-
thetic voice. Therefore, we rely on spectral measures at
unit selection to avoid problematic units.

Once the speech signals were segmented and the list
of sentences are ready, we can start building the voices
for our TTS system. The process consists of three main
steps: feature extraction, unit indexing and voice gener-
ation. The first step extracts F0, duration, energy and
MFCC for each speech unit. The index file contains the
relevant information needed for computing the target and
concatenation costs. In the last step, the parameters of
the prosody models and the weights of the unit selection
algorithm are computed.
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