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Abstract
Generally, corpus-based speech synthesis systems provide a
considerable synthesis quality since the underlying unit selec-
tion approaches were optimized in the last decade. The unit
selection of the synthesizer is attempting to find the best combi-
nation of unit sequences to assure that the perceptual differences
between expected (natural) and synthesized speech signal are as
low as possible. Depending on database and algorithmic design,
numerous mismatches and distortions are possible and they are
audible in the synthesized speech signal. Therefore, unit selec-
tion strategy and parameter tuning are still important issues. We
present a novel concept to increase the efficiency of the exhaus-
tive speech unit search within the database by an unit selection
model, which is based on mapping analysis of only the con-
catenation costs and Bayes optimal classification (BOC). BOC
has one principle advantage because it does not require an ex-
haustive training to set up weighted coefficients for target and
concatenation sub-costs. It can provide an alternative for unit
selection but requires further optimization e. g. by integrating
target cost mapping.
Index Terms: speech synthesis, unit selection, speech intelligi-
bility, speech analysis.

1. Introduction
Corpus-based concatenative speech synthesis has been stud-
ied and utilized in text-to-speech synthesis (TTS) systems over
many years [1], [2]. In this approach, the speech database de-
sign covers a big variety of the phonetic and prosodic language
features. Consequently, unit selection should be able to find
the best unit sequence to synthesize an input text by minimiz-
ing the total cost function. The total cost function is modeled
as the weighted sum of target and concatenations costs, which
contains various features such as duration, F0 and energy as
target but also linear spectral frequencies (LSFs), multiple cen-
troid analysis (MCAs) [3] and Mel frequency cepstral coeffi-
cients (MFCCs) as concatenation features.

The target cost is defined as the estimation of the mismatch
between a recorded acoustic speech unit and a predicted spec-
ification, which is estimated by using the prosody module of
the TTS system. It is calculated as the weighted sum of char-
acteristic distances between the components of the target and
candidate feature vector like duration, pitch value (F0) and en-
ergy. Likewise, the concatenation cost reflects the mismatch or
distortion between two speech units due to the frequency for-
mants and others spectral features of the speech units that do
not align properly [4]. Mismatches are known as concatenation
cost, which could be considered as an estimator of the quality of
speech synthesis. If the discordance between a speech unit and
the predicted specification is also taken into account, the quality
of the synthesized speech signal even suffers an extra degrada-
tion. Therefore, it is necessary to set up all these factors in

one integrated function, which represents the influence of target
and concatenation costs on the resulting speech synthesis qual-
ity and enables the finding of optimal speech units sequences
to obtain the desired synthesized waveform. But the process-
ing of all information requires an exhaustive training to set up
the weighted coefficients for both sub-costs [1][2]. Therefore,
we present an unit selection framework based on Bayes optimal
classification (BOC) and its experimental evaluation. BOC has
a principle advantage because it does not require an exhaustive
training to set up weighted coefficients for target and concatena-
tion sub-costs. Section 2 gives an overview about the proposed
unit selection framework and its components. The BOC is de-
scribed in section 3 and the experimental results are explained
in section 4.

2. Unit Selection Framework
The target and concatenation costs have been integrated in a to-
tal cost function by [1], which represents the degradation on a
synthesized speech signal. Additionally, they described a unit
selection model as a search for a low cost candidate unit se-
quence. Although, different target and concatenation sub-costs
have been proposed to unit selection, the sub-costs already men-
tioned have reached a significantly representation of the deteri-
oration of a synthesized signal. Hence, they compose a special
unit selection process in such a way that the sum of the target
and concatenation costs determines the total cost C for a se-
quence of n speech units.
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Where tj represents the searched predicted specification,
ui the speech unit, ct

j target cost, p the number of weighted
target sub-costs, cc

j concatenation cost, q the number of con-
catenation sub-costs and w the weighted coefficients (WCF).
The following step should be to find the weighted coefficients
that determine the effect-weight of every target and concatena-
tion sub-cost in the total cost function. This is considered as
the best way to find the right speech unit sequence for the de-
sired synthesized speech signal. However, the search for the
optimal weighted coefficients is not a trivial task, because it
normally requires training, which is a subjective work and time
consuming for every speech database [1][5][7][8]. Therefore,
we present a unit selection framework that is based on mapping
of the concatenation sub-costs and a Bayes Classifier. There-
with, we avoid principally the exhaustive and subjective search
of weighted coefficients. Also, we estimate in great part the
quality or degradation of the synthesized signal by mapping the
concatenation sub-costs.
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Figure 1: Proposed Unit Selection Framework.

2.1. Bayes classification framework

The Bayes classification framework is composed by different
modules that are shown in Fig. 1. It illustrates the speech
database, where all possible speech units that compose the de-
sired synthesized speech signal are searched. The speech unit
candidates are chosen in the speech database by Backward Or-
acle Matching algorithm (BOM) [6]. It picks up all possible
speech units that compose the phonetic sequence of the text to
be synthesized. Once the speech units are found, their MCAs,
LSF and MFCCs coefficients are calculated at the right and left
boundaries and represented in a vector form. Afterwards the
distance ∆ between predecessor and candidate speech unit se-
quence of the desired synthesized speech signal is calculated.
The mapping is obtained by calculating the concatenation sub-
costs distance of the speech units. Finally, the Bayes classifica-
tion determines if the concatenation between the speech units is
corrupt or proficient. In the following sections the components
of the proposed unit selection framework will be described in
more detail.

2.2. Speech corpus and database

We utilize the “TC-STAR” English speech database [9], which
was designed with high quality criterion. The quality speech
in the recordings was reached with 96 kHz sampling rate, 16
Bit precision, SNR > 40 dB and bandwidth of 40 Hz to 20
kHz. The speech database has a duration of over 10 hours. It is
composed for a corpus of about 90 000 words, which are con-
tained in 5558 sentences. This amount is distributed on the sub-
corpora of transcribed speech, written text, constructed phrases
and expressive speech. The 70% of the sentences were labeled
automatically and 30% were hand labeled, where 30% cover
all Diphonemes of the English language. Therefore, there is at
least one error free labeled Diphoneme in the speech database.
Also, the Diphoneme is established as the basic speech unit.

2.3. Parametric distance function

The Delta symbols in Fig. 1 show the distance function. They
compare two values of the same feature and produce a distance
value output. This function measures the degree of match be-
tween the features of two adjacent speech unit candidates. The
distance is calculated with 20 ms frames, 9 MCAs, 26 LSFs
and 24 MFCCs coefficients features vector in the correspond-
ing boundary at the point of concatenation. We utilize the Ma-
halanobis distance measure, because it has shown a high corre-

lation with human perception of discontinuity at concatenation
boundaries [10].

d(�x, �y) =
√

(�x − �y)T K−1(�x − �y) (2)

Where �x and �y are the features vectors of the predecessor
and candidate speech units and K−1is the inverse covariance
matrix. That is how the distance between the speech units for
the MCA, LSF and MFCC features is calculated.

2.4. Mapping Analysis

The mapping consists of an off-line calculation of the concate-
nation sub-costs between speech units in the database, which do
and do not present displeasing distortions when they are con-
catenated. It is estimated by the distance calculation between
the speech unit features like MCAs, LSFs and MFCCs at the
right and left boundaries [11]. The mapping of concatenation
sub-costs that do not present any distortion is done by the con-
catenation sub-cost distance calculation between speech units,
which are continuous in the words or sentences in the speech
database. Although, the concatenation sub-costs of continuous
speech units are set up to zero by definition [1][2], we utilize the
calculated concatenation sub-cost distances to map the real val-
ues of continuous speech units off-line. In this way, we obtain
a real reference of concatenation sub-costs without distortion.
The mapping of those concatenation sub-costs that present un-
pleasant distortions is done by using a determined set of speech
units. These speech units come from different words or sen-
tences contained in the speech database and were previously
selected to not concatenate properly by a listening test on syn-
thetic utterances. Therewith, the second reference is also ob-
tained with the same number of concatenation samples like the
properly concatenation samples. We were able to differentiate
between two mapped references, which represent the proficient
and corrupt areas of concatenation as it is shown in the Fig. 2. It
illustrates the mapping of the concatenation sub-cost distances
between continuous and not continuous speech units at the point
of concatenation. For this instance the concatenation type at the
middle of a short vowel /U/ is shown, because the concatenation
between short vowels has proved to be the most inclined case to
concatenate not properly [5][11]. Finally, a mapping for every
phoneme concatenation should be done. Consequently, the next
task is to determine the concatenation sub-cost area, which can
determine if the join between two not continuous speech units is
a proficient or corrupt concatenation based on the correspond-
ing previously mapping pro phoneme by a classification method
like BOC.

3. Bayes Optimal Classification
Bayes optimal classification establishes that the class probabil-
ity k given the feature vector �x is equal to multiplication be-
tween the a priori likelihood the class P (k) and the density
probability function P (�x/k) divided by the probability of the
sample, according to equation (3).

P (k/�x) =
P (�x/k) · P (k)

P (�x)
(3)

Where k is the proficient or corrupt concatenation class and
�x is the concatenation sub-cost distance vector between two
speech units. The denominator is not considered, because it
is common to both concatenation classes. A priori probabilities
of continuous and not continuous concatenation sub-costs have
been assumed equal 0.5. Also, we assumed the independence
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Figure 2: Concatenation sub-costs mapping.

between feature vectors, so that the BOC combines the impact
and probability of feature vector on the class label. BOC was
modeled with a multivariate density Gaussian distribution [12]
considering that the feature vectors have a normal distribution
as is shown in the following equation (4).

P (�x/k) =
1

(2π)N/2 |Kk|1/2
(4)

· exp

[
−1

2
(�x − �µk)T

K
−1
k (�x − �µk)

]

Where �x is Mahalanobis distance by concatenating speech
units, the covariance matrix K and mean µ are calculated ac-
cording to the class feature vectors of Mahalanobis distance.
Afterwards we would like to find those speech units that have
the maximum probability. It is achieved by a discriminant func-
tion as it is described in the following equation (5) and (6) .

e = arg
i=1,...K

max di(�x) (5)

di(�x) = P (k) · P (�x/k) (6)

Where e is the maximum argument of the discriminant
function di(�x) in the equation (6), which contains the maxi-
mum probability. K is the number of classes (corrupt or profi-
cient concatenation type).

3.1. Bayes discriminant function

By the substitution of the multivariate density Gaussian distri-
bution (4)in the discriminant function (5) we obtain the corre-
sponding distance Bayes discriminant function (7) as it is shown
in the Fig. 3. The discriminant function allows to classify a con-
catenation between two not continuous speech units into corrupt
and proficient concatenation type, which is based on its proba-
bility estimation.

d
∗
k(�x) = ln

[
dk(�x)(2π)N/2

]
(7)
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Figure 3: Bayes discriminant function.

Equation (7) describes a Bayes discriminant function [12],
which can be used to calculate the corresponding discriminant
function for every concatenation of phonemes of not continuous
speech units in the speech database. The Bayes discriminant
function at the point of concatenation of the nasal phoneme /N/
is shown in Fig. 3. It illustrates 2-Dimensional mapping anal-
ysis, where the both concatenation areas are delimited by the
Bayes discriminant function. It is easy to recognize that some
concatenation sub-costs of not continuous speech units fall in-
side the proficient concatenation area, which is known as clas-
sification error [12].

3.2. Unit selection process

Firstly, the speech units that had been found for the desired syn-
thesized speech signal by the BOM are processed by the Bayes
Classifier. The BOC classifies the speech units in corrupt and
proficient concatenation types by using the corresponding dis-
criminant function, as it is shown in Fig. 3. Then, the speech
units, which were found to concatenate corrupt and whose con-
catenation sub-costs do not fall into the proficient concatena-
tion delimited area by the discriminant function, are removed
from the unit selection process. Afterwards, the left over speech
units are computed by the corresponding previously obtained
distribution of the proficient concatenation type by using max-
imum likelihood method. Finally, the concatenation of speech
units that shows the highest likelihood is selected. In this way,
these speech units are selected that match best with the searched
phoneme sequence to obtain the desired speech signal without
distortions by the concatenative-based speech synthesis.

4. Listening Test

The DreSS TTS system [13] was used to synthesize three blocks
of 10 utterances with three different unit selection methods.
Furthermore, the previously mentioned speech database “TC-
STAR” was utilized for the three unit selection methods in the
DreSS TTS system. The first block (Conventional US) was syn-
thesized by the unit selection method proposed in [1], which
represents the basic principles of the sum of target and con-
catenation costs for unit selection and requires an exhaustive
training to set up the weighted coefficients for target and con-
catenation sub-costs. By the second block (Masking US) the
unit selection proposed in [14] was used, which bases its unit
selection method on previously defined transparency and qual-
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ity functions and determines if a determined concatenation will
or will not present distortions. The last block (BOC US) is our
proposed unit selection method.

4.1. Experiment

The synthesized utterances were evaluated by 10 listeners and
finally a mean opinion score (MOS) of their absolute category
decisions has been calculated. All listeners were students or
researchers at Dresden University of Technology with good En-
glish proficiency, experience on speech recognition and synthe-
sis. Their age varied from 20 to 30 years. The listening test con-
sisted of the evaluation of intelligibility, naturalness and con-
catenation quality of the synthesized utterances. The probands
listened to the test stimuli in random order. We asked them to
rate the quality of the synthesized utterances on a scale of 1
(Bad) to 5 (Excellent). The MOS values obtained for the three
unit selection methods are summarized in Table 1.

Table 1: Mean opinion score listening test.

Conventional US Masking US BOC US

2.76 2.25 2.67

4.2. Results

The mean opinion scores in Table 1 turned out to be significant
at the one percent-level by paired t-test. Masking US based on
the masking quality function has obtained the worst results in
the listening test. This is due to the quality concatenation mask-
ing function that can not be determined by a linear function for
every type of concatenation as it was proposed by [14]. Conven-
tional US based on the sum of target and concatenations costs,
performed slightly better than BOC. This reflects the potential
improvements that can be obtained by taken into account the
target sub-costs in the speech synthesis. Nevertheless, the task
of setting up the weight coefficients on the total cost C function
in the equation (1) was a very difficult subjective work, which
required many hours of listening training for the specific corpus
database. Summarized, the proposed BOC unit selection ob-
tained better results than the proposed masking method of unit
selection and it was slightly worse than the conventional unit se-
lection method manifesting only a small perceptive difference
between them. BOC unit selection performance is functional
since it has shown an acceptable quality and avoided many
hours of training to determine an appropriate search for the best
speech unit sequence by mapping the concatenation sub-costs,
which is mainly considered as a subjective task.

5. Conclusion
This paper presented another perspective on unit selection
methods for corpus-based speech synthesis by proposing a
Bayes optimal classifier. BOC unit selection is based on con-
catenation and sub-costs mapping of speech units representing
distortions in the concatenated unit sequence. In this method,
the mapping provides two references of proficient and corrupt
concatenation areas. Furthermore, a discriminant function as
shown in the equation (7) was developed, which calculates the
probability estimation of proficient and corrupt concatenation
type between two speech units by this discriminant function.
BOC has one principle advantage because it does not require an
exhaustive training to set up the weighted coefficients for target

and concatenation sub-costs. Its operation is based on an objec-
tive mapping of the concatenation sub-costs. Therefore, BOC
unit selection supports the integration of new speech databases
in a TTS system avoiding exhaustive training for each newly
integrated speech database. In future, it will be important to im-
prove the BOC unit selection performance by the integration of
a target cost mapping because the target cost has a great influ-
ence on the naturalness of the synthesized speech signal.
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