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ABSTRACT 

 
The synthesis quality is influenced by many important factors, 
among which the correctness of the grapheme-to-phoneme 
conversion is one of the crucial ones. The globalization 
phenomenon makes it impossible to have a dictionary with all 
of the existing words for each language. Automatic letter-to-
sound systems have been in the center of attention for the last 
decade. One of the most effective and promising methods 
resulted to be the so-called “pronunciation by analogy” 
method [8], based on the analogy in the grapheme context, 
allowing derivation of the correct pronunciation for a new 
word from the parts of similar words present in the dictionary. 
This paper aims at the study of this method’s performance and 
comparison to authors’ previous work, furthermore novel 
scoring strategies for determining the best pronunciations were 
proposed along with new ways of their combination. A word 
error rate reduction of 1.5-2.5 percent was obtained. 

1. INTRODUCTION 
 
The derivation of the pronunciation in English language given 
a letter string is a hard task for non-native speakers and it is 
even truer for automatic systems that are usually based on 
statistics.  

The human brain handles statistics in a different way; 
humans use analogy to memorize how to pronounce words or 
word fragments in English and other languages with deep 
orthography. 

When trying to read something, it takes time and extra 
effort to apply the pronunciation rules of the language, while 
the analogy matching that our brain performs in thunder fast. 
Either we say it or not correctly depend on the number of 
words with similar pronunciation rules that we have learned 
before. This is where the computer has a great advantage 
compared to, for example, English learners.  For the computer, 
grasping all the examples from the dictionary and apply 
statistics-based analogy to derive pronunciation for the new 
words is a question of milliseconds. The pronunciation by 
analogy is an interesting technique similar to language 
learning that was successfully applied to derived pronunciation 
of out-of-vocabulary words [4,8,11]. 

Another important aspect of language learning is 
learning from errors.  When a new word is pronounced 
erroneously a new word and corrected by a native speaker or a 
teacher, our brain learns not to commit the same error in a 
similar situation.  The more examples of similar errors, given a 
similar error occurrence situation we have, the better we learn 
not to commit the same error again. 

Combining these two methods used by language learners 
powered up by the computer CPU’s learning and computing 
capacity we are able to improve the grapheme-to-phoneme 
module. The objective of this work was to compare the 
pronunciation-by-analogy system reported by Marchand and 

Damper [8]. This paper presents an interesting contribution to 
the research in speech synthesis due to the comparison of the 
grapheme-to-phoneme methods using the same dictionaries for 
training and testing of the systems. The possibilities of further 
improvement of the system’s performance were explored from 
different perspectives. New scoring strategies were proposed 
and new ways to combine strategies by applying error-driven 
learning were studied. 
 

2. PRONUNCIATION BY ANALOGY SYSTEM 
DESCRIPTION 

 
For the first time, pronunciation-by-analogy (PbA) was 
proposed for reading studies by Glushko in 1979 [6] and later 
in 1986 Dedina and Nusbaum [4] introduced the use of this 
method to TTS applications. The latest and most successful 
implementation of the algorithm was published by Marchand 
and Damper [8] which we have reimplemented for our 
experiments. The system as well as the initial one, called 
PRONOUNCE [4] consists of four major components.  

 
- Aligned lexicon (in one-to-one manner) 
- Word matcher 
- Pronunciation lattice (a graph that represents all 

possible pronunciations) 
- Decision maker (chooses the best candidate among 

all present in the lattice) 
 
In order to search for analogy between words that share 

similar substrings, in the first place it is necessary to make 
sure that there is a one-to-one match between the orthographic 
and phonetic strings, or, in other words, each letter has to be 
aligned to its corresponding phonetic representation. Finding 
the correct alignment is a challenge since the orthographic and 
phonetic representations of a word in English do not always 
have the same length. Due to its rather complex orthography, 
in English words there are usually more letters than sounds. In 
this case a null phone /_/ is inserted into the phoneme string, 
ex. thing / T _ i N _/, otherwise, if the number of phonemes is 
greater than that of letters, the phonemes corresponding to the 
same letter are joint together in one, e.g.  fox /f A k_s/. The 
alignment is based on EM algorithm, and it is similar to that 
described in [3]. The alignment given by the system is not 
always the correct one and it can influence negatively on the 
results, 

After the dictionary has been aligned in the operational 
phase the matcher, one of the most important components of 
the system, starts to search for common substrings between the 
input word and the rest of the dictionary entries. Before the 
matching starts each word in the dictionary and its 
pronunciation are added word beginning and end marks, for 
example  #thing# #T _ i N _  #/. Every input word is then 
compared to all the words in the lexicon in order to find 
common “arcs”.  Let us call the substrings in the grapheme 
context letter arcs and the corresponding substring in the 
phoneme context phoneme arcs. All the possible letter arcs 
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with the minimum length of 2 letters and the maximum length 
equal to the input word length are generated and then searched 
for in the dictionary. For every letter arc from the input word, 
matching with the same letter arc from a dictionary word, the 
corresponding pronunciation or the phoneme arc is extracted. 
The frequency of appearance of each phoneme arc 
corresponding to the same letter arc is stored along with the 
start position is for each arc. As an example, we can assume 
that the word top is absent from our dictionary; the list of all 
possible letter arcs for this word can be given as “#t, #to, #top, 
to, top, top#, op, op#, p#”. Now let us suppose that in the 
lexicon we have the word “#topping#” with the pronunciation 
/# t A p _ I _ N #/,  here the  matcher finds the letter arcs #t, 
#to, #top, and op, with their corresponding phoneme arcs /# t/, 
/# t A/, /# t A p/, /A p/.  Each time that for the same letter arc 
we find the same phoneme arc; the frequency of the phoneme 
arc is incremented. The matching phoneme arcs are entered 
into the pronunciation lattice that can be represented by nodes 
and connecting arcs. If an arc starts at a position i and ends at a 
position j, and if there is yet no arc starting or ending at 
position i , the nodes Li and Lj are added to the graph. An arc is 
drawn between them. All the nodes are labeled with the 
corresponding “juncture” phoneme and its position in the 
word. The arcs are labeled with the remaining phonemes and 
the frequency of their appearance. An example of the lattice 
construction for the word top using the arcs found in the word 
topping is illustrated in Figure 1. All the arc frequencies are 
assumed to be equal to 1. Each complete path through the 
lattice is called “pronunciation candidate”. We considered 
only the shortest paths through the lattice [8]. If there was 
unique shortest path, it was chosen as the best pronunciation 
and the algorithm stopped. In the usual case when there are 
several shortest paths through the lattice, it is necessary to 
choose the best pronunciation candidate among them. 
Therefore, the last but not least component of the algorithm is 
the decision making function. 
 

 
 

Figure 1. Lattice construction for the word top. 
 

Each candidate can be represented as Cj={Fj,Dj,Pj} , 
where Fj = {F1,…,Fn} are the phoneme arc frequencies along 
the jth path, Dj = {d1,…,dn} are the arc lengths and Pj = 
{p1,…,pl} are the phonemes comprising the pronunciation 
candidate, being l is the pronunciation length.  

Marchand and Damper in 2000 [8] proposed to use 5 
scoring strategies in order to choose the best pronunciation. 
They will be explained with in more detail in the next section. 
In the same work two ways of strategy combination were 
introduced. Each strategy gives us a score for each candidate 
and based on its score each candidate is assigned a rank. 
According to the rank, each candidate is awarded points. If a 
strategy gives the same score for several candidates, they are 
given the same rank and the same number of points. There are 
two manners of determining the winner candidate; the first one 
is the sum rule, which chooses the candidate that has the 
largest value of the sum of points for all of the included 

strategies. The product rule chooses the candidate with the 
largest value of product of the points awarded by each of the 
included strategies. For NetTalk dictionary the best accuracy 
obtained was equal to 65.5% for words and 92.4% for 
phonemes, using all five strategies [8]. The sum and the 
product rule seemed to give the similar results. 

 
3. MULTI-STRATEGY APPROACH 

 
In our work we have extended the study of the scoring 
strategies implemented 6 new scoring strategies. All of the 
scoring strategies, the original ones and the proposed ones 
involve phoneme arc frequencies fi, arc lengths di, and pl the 
phonemes of which the candidate consists.  
 
The original 5 strategies [8] are: 
 
1. Maximum arc frequency product (PF) 
 
For each arc the corresponding arc frequencies are multiplied 

, n is the candidate length, or the number of 
arc of which the candidate consists. Rank 1 is given to the 
candidate scoring the maximum PF(). 
 
2. Minimum standard deviation of arc lengths (SDPS) 
 

 , where  is the median arc length. 

Rank 1 is given to the candidate scoring the minimum SDPS(). 
3. Highest same pronunciation frequency (FSP) 
 
The privilege is given to the candidates that share the same 
pronunciation with the others 

 , rank 1 
is given to the candidate scoring the maximum FSP(). 
 
4. Minimum number of different symbols (NDS) 
 
This strategy gives preference to the candidates whose 
phonemes appear in the majority of other candidates. 

 , where l is the number of 
phonemes in a pronunciation, δ  is the Kroneker delta, which is 
equal to 1 if  and 0 otherwise, and N is the number of 
candidates, rank 1 is given to the candidate scoring the 
minimum NDS(). 
 
5. Weakest arc frequency (WL) 
 
The candidate whose lowest arc frequency value is the highest 

 , rank 1 is given to the candidate scoring 
the maximum WL(). 
 
The proposed strategies are: 
 
6. Weighted arc product frequency (WPF) 
 
Similar to Strategy 1, but for each phoneme arc, Ak the 
frequency of its appearance is divided by k, the number of 
different phoneme arcs found in the dictionary for the 
corresponding letter arc, Li. For example if our word, for 
which we are searching for the pronunciation is #infinity# and 
if in the pronunciation lattice we have a path that starts with a 
letter arc, L1= “# in” and a corresponding phoneme arc A1=/# 
@ N/ , whose frequency is equal to 12, in order to obtain the 
weighted arc frequency , we have to divide 12 by the number 
of different phoneme arcs available in the dictionary for the 
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letter arc “#in”.  Let us say that besides A1 we also found the 
following phoneme arcs: A2 = /# I N/ and A3= /# _ n/.  Then 
the weighted frequency for A1 is WF(A1)= 12/3 
 
7. Strongest first arc (SF) 
 
The seventh strategy aims at capturing the analogy in prefixes. 
The candidate with the highest frequency score for the first arc 
is given rank 1.  
 
8. Strongest last arc (SL) 
 
This strategy is analogous to the previous one but for the 
suffixes. The candidate with the highest frequency score for 
the last arc is given rank 1. 
 
9. Strongest longest arc (SLN) 
 
The candidate who has at the same time the longest and the 
most frequent arc is given rank1. First the longest arc is 
chosen and if there is a tie the next step is to choose the most 
frequent one. The candidate that have the longest and arcs 
seem to be more reliable, and of course, the more frequent the 
arc is the stronger is the analogy. 
 
10. Same symbols multiplied by arc frequency (SSPF) 
 
The tenth strategy is similar to the fourth one (NDS), but on 
one hand when counting the common phonemes, we also take 
into consideration the phoneme arc frequencies. 
For every candidate the pronunciation is compared phoneme 
by phoneme to other candidate pronunciations. 
If a candidate has a common phoneme with other candidates, 
we give it a higher score, depending also on the number of 
times the phoneme arc containing that phoneme appears in the 

dictionary . 

 
11. Product frequency, same pronunciation (PFSP)  
 
The combination of first and third strategy, here all the 
candidates that share the same pronunciation obtain the same 
score, which is equal to the combination of the scores assigned 
to each one of the candidates by the first strategy  

. 

 
4. EXPERIMENTAL RESULTS 

 
The experiments were performed on two dictionaries, NETtalk 
and LC-STAR dictionary, used by the authors in previous 
experiments. 

The NETtalk has 20K of words, and it was manually 
aligned by Sejnowski and Rosenberg publicly available at 
[13]. The phonetic symbols used by Sejnowski and Rosenberg 
are left unchanged. 

The LC-STAR is a public dictionary of U.S. English, 
created in the framework of LC-STAR project [7], we have 
used only the common words (about 50 K). The phone set 
used is SAMPA. [10]. No homonyms were considered for the 
experiments. As usual, 90 percent of the lexicons were used 
for training and 10 for test. 

The first thing to do was to find out how each strategy 
performed. The strategy mask is a binary string, where one 
means the strategy is included in the final result and 0 
otherwise. 

The results for eleven strategies for both dictionaries are 
given in Table 1.  

Strategy mask/ 
Dict 

NETtalk LC-STAR 

Ph. acc. W. acc. Ph. acc. W.acc. 

10000000000 89.70% 57.48% 94.76% 73.59% 

01000000000 88.00% 50.59% 92.68% 65.31% 

00100000000 89.95% 59.06% 95.60% 79.34% 

00010000000 90.27% 57.43% 95.53% 76.73% 

00010000000 88.56% 53.75% 94.07% 71.44% 

00000100000 89.69% 57.02% 94.96% 75.05% 

00000010000 89.15% 55.84% 92.95% 66.17% 

00000001000 87.92% 50.28% 94.46% 72.26% 

00000000100 88.68% 54.01% 92.82% 65.23% 

00000000010 89.99% 58.30% 94.95% 74.61% 

00000000001 91.14% 62.94% 96.01% 80.32% 
 
Table 1. Results for each strategy for NETtalk and LC-STAR 
dictionaries. 
 
From the results above we can see that the strategies give 
different performance of different dictionaries. The best 
strategy is the proposed strategy 11 and the second best 
strategy is the original strategy 3 for both dictionaries. For 
NETtalk dictionary 2 proposed strategies and 3 original ones 
made it to the top five strategy list while for LC-STAR 
dictionary the top five strategies include 3 proposed and 2 
original ones.  As the next step we evaluated all possible 
strategy combinations, in the strategy combination mask 1 
means the strategy is included in the final decision and 0 the 
strategy is left out.  
For our implementation of the 5 original strategies the best 
results obtained for NETtalk lexicon were 63.04% words and 
91.02% phonemes correct, given the combination of first and 
third strategies  “10100” and 80.94% words and 96.07% 
phonemes correct for LC-STAR lexicon and the same strategy 
combination. These results are slightly different from those 
reported in [8], as well as the scores obtained for each original 
strategy with our system, but we believe that it is due to the 
implementation nuances. The best word accuracy obtained in 
[8] is 65.5% using all five strategies for NETtalk lexicon.The 
top five combination results are given in Tables 2 and 3.  
 

S. combination Ph. acc. W. acc. 

11110010011 91.28% 63.50% 

01110110011 91.24% 63.40% 

01100010001 91.30% 63.40% 

01100010011 91.29% 63.35% 

00100010001 91.31% 63.35% 
 
Table 2. Top five strategy combination results for NETtalk 
dictionary. 
As before, the top five results include proposed strategies. 
Eleventh strategy is present throughout Tables 2 and 3 and its 
contribution to improvement of overall score is the greatest for 
both lexicons.  

The best strategy combination results obtained are 
higher than those previously obtained combining only the 
original strategies. The word error rate decreased from 36.96% 
to 36.5% for NETtalk and for LC-STAR from 19.06% to 
18.78%. That’s between 1.5 and 2.5 percent of error decrease. 
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S. combination  Ph. acc. W.acc. 

00101000001 96.13% 81.22% 

01100001001 96.08% 81.12% 

01111100001 96.11% 81.04% 

01101001001 96.04% 81.04% 

00101001001 96.09% 81.04% 
 
Table 3. Top five strategy combination results for LC-STAR 
dictionary. 
 
To further explore the possibilities of improvement for 
grapheme-to.-phoneme scores the transformation based 
learning was applied to strategy combination. 

The transformation-based error-driven algorithm (TBL) 
originally invented by Eric Brill [2] consists in learning the 
transformation rules from the training data that is labeled with 
some initial classes. Using the TBL algorithm to correct the 
prediction previously obtained by another classifier allows us 
to capture the imperfections of previous approximations to the 
linguistic irregularities into a set of context-dependent 
transformation rules, where the context serves as the 
conditioning features.  
In our case we took the best combination of original strategies 
as the initial prediction for LC-STAR dictionary to correct. 
The additional features were letters, phonemes and also each 
original strategy prediction per experiment. In order to obtain 
training predictions, we used n-fold evaluation, with n equal to 
the number of words in the dictionary. Each nth word was 
removed from the dictionary and input as the unknown word 
to the “pronunciation by analogy” system. 
The best additional feature was found to be the  “00100” or the 
third prediction standing alone, and it gave 81.46% words and 
96.21% phonemes correct, using the 4-letter context and no 
constraints for correction. Constraints would limit the 
algorithm to correct the erroneous phonemes only by the ones 
previously seen in the training data. Using fourth and fifth 
predictions gave a slighter improvement up to 81.04% and 
81.12% words correct correspondingly.  These results should 
be compared to 80.94%, best result using only the original 
strategies. We have also used all five predictions as additional 
features but the improvements were not significant.  
The results show that pronunciation by analogy captures very 
well all the regularities in English orthography, not leaving 
much room for improvement for the TBL method. 
Comparing these results to previously obtained in [9], shown 
in Table 4 we can conclude that PbA is the best grapheme-to-
phoneme method up to now. 
 

Classifiers baseline 
DT 67.47% 
FST 79.38% 
HMM 47.54% 

PbA 80.94% 

 
Table 4. Word accuracy for different grapheme-to-phoneme 
methods.  
 
The results above were obtained for the LC-STAR dictionary 
using decision trees (DT) [1], finite state transducers (FST) [5] 
and hidden Markov models (HMM) [10] and PbA classifiers.  
 

5. CONCLUSIONS 

This paper gives an overview of the pronunciation by analogy 
method used for g2p. New scoring strategies were proposed 
and the improvements were obtained based on these strategies. 
The 1.5-2.5% of error reduction was reached in comparison 
with the strategies used in [8]. The transformation-base 
learning algorithm was applied and the results were analyzed. 
New strategy combination methods were considered and slight 
improvements attained. The fact that applying rule-based error 
correction did not give important improvements allows 
concluding that the PbA methods is capable of capturing quite 
well the regularities in English orthography. 
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