
FURTHER IMPROVEMENTS TO PRONUNCIATION BY ANALOGY

Tatyana Polyákova, Antonio Bonafonte

Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

ABSTRACT

The synthesis quality is influenced by many important factors,
among which the correctness of the grapheme-to-phoneme
conversion is one of the crucial ones. The globalization
phenomenon makes it impossible to have a dictionary with all
of the existing words for each language. Automatic letter-to-
sound systems have been in the center of attention for the last
decade. One of the most effective and promising methods
resulted to be the so-called “pronunciation by analogy”
method [8], based on the analogy in the grapheme context,
allowing derivation of the correct pronunciation for a new
word from the parts of similar words present in the dictionary.
This paper aims at the study of this method’s performance and
comparison to authors’ previous work, furthermore novel
scoring strategies for determining the best pronunciations were
proposed along with new ways of their combination. A word
error rate reduction of 1.5-2.5 percent was obtained.

1. INTRODUCTION

The derivation of the pronunciation in English language given
a letter string is a hard task for non-native speakers and it is
even truer for automatic systems that are usually based on
statistics.

The human brain handles statistics in a different way;
humans use analogy to memorize how to pronounce words or
word fragments in English and other languages with deep
orthography.

When trying to read something, it takes time and extra
effort to apply the pronunciation rules of the language, while
the analogy matching that our brain performs in thunder fast.
Either we say it or not correctly depend on the number of
words with similar pronunciation rules that we have learned
before. This is where the computer has a great advantage
compared to, for example, English learners. For the computer,
grasping all the examples from the dictionary and apply
statistics-based analogy to derive pronunciation for the new
words is a question of milliseconds. The pronunciation by
analogy is an interesting technique similar to language
learning that was successfully applied to derived pronunciation
of out-of-vocabulary words [4,8,11].

Another important aspect of language learning is
learning from errors. When a new word is pronounced
erroneously a new word and corrected by a native speaker or a
teacher, our brain learns not to commit the same error in a
similar situation. The more examples of similar errors, given a
similar error occurrence situation we have, the better we learn
not to commit the same error again.

Combining these two methods used by language learners
powered up by the computer CPU’s learning and computing
capacity we are able to improve the grapheme-to-phoneme
module. The objective of this work was to compare the
pronunciation-by-analogy system reported by Marchand and

Damper [8]. This paper presents an interesting contribution to
the research in speech synthesis due to the comparison of the
grapheme-to-phoneme methods using the same dictionaries for
training and testing of the systems. The possibilities of further
improvement of the system’s performance were explored from
different perspectives. New scoring strategies were proposed
and new ways to combine strategies by applying error-driven
learning were studied.

2. PRONUNCIATION BY ANALOGY SYSTEM
DESCRIPTION

For the first time, pronunciation-by-analogy (PbA) was
proposed for reading studies by Glushko in 1979 [6] and later
in 1986 Dedina and Nusbaum [4] introduced the use of this
method to TTS applications. The latest and most successful
implementation of the algorithm was published by Marchand
and Damper [8] which we have reimplemented for our
experiments. The system as well as the initial one, called
PRONOUNCE [4] consists of four major components.

- Aligned lexicon (in one-to-one manner)
- Word matcher
- Pronunciation lattice (a graph that represents all

possible pronunciations)
- Decision maker (chooses the best candidate among

all present in the lattice)

In order to search for analogy between words that share

similar substrings, in the first place it is necessary to make
sure that there is a one-to-one match between the orthographic
and phonetic strings, or, in other words, each letter has to be
aligned to its corresponding phonetic representation. Finding
the correct alignment is a challenge since the orthographic and
phonetic representations of a word in English do not always
have the same length. Due to its rather complex orthography,
in English words there are usually more letters than sounds. In
this case a null phone /_/ is inserted into the phoneme string,
ex. thing / T _ i N _/, otherwise, if the number of phonemes is
greater than that of letters, the phonemes corresponding to the
same letter are joint together in one, e.g. fox /f A k_s/. The
alignment is based on EM algorithm, and it is similar to that
described in [3]. The alignment given by the system is not
always the correct one and it can influence negatively on the
results,

After the dictionary has been aligned in the operational
phase the matcher, one of the most important components of
the system, starts to search for common substrings between the
input word and the rest of the dictionary entries. Before the
matching starts each word in the dictionary and its
pronunciation are added word beginning and end marks, for
example #thing# #T _ i N _ #/. Every input word is then
compared to all the words in the lexicon in order to find
common “arcs”. Let us call the substrings in the grapheme
context letter arcs and the corresponding substring in the
phoneme context phoneme arcs. All the possible letter arcs

— 149 —

V Jornadas en Tecnología del Habla

with the minimum length of 2 letters and the maximum length
equal to the input word length are generated and then searched
for in the dictionary. For every letter arc from the input word,
matching with the same letter arc from a dictionary word, the
corresponding pronunciation or the phoneme arc is extracted.
The frequency of appearance of each phoneme arc
corresponding to the same letter arc is stored along with the
start position is for each arc. As an example, we can assume
that the word top is absent from our dictionary; the list of all
possible letter arcs for this word can be given as “#t, #to, #top,
to, top, top#, op, op#, p#”. Now let us suppose that in the
lexicon we have the word “#topping#” with the pronunciation
/# t A p _ I _ N #/, here the matcher finds the letter arcs #t,
#to, #top, and op, with their corresponding phoneme arcs /# t/,
/# t A/, /# t A p/, /A p/. Each time that for the same letter arc
we find the same phoneme arc; the frequency of the phoneme
arc is incremented. The matching phoneme arcs are entered
into the pronunciation lattice that can be represented by nodes
and connecting arcs. If an arc starts at a position i and ends at a
position j, and if there is yet no arc starting or ending at
position i , the nodes Li and Lj are added to the graph. An arc is
drawn between them. All the nodes are labeled with the
corresponding “juncture” phoneme and its position in the
word. The arcs are labeled with the remaining phonemes and
the frequency of their appearance. An example of the lattice
construction for the word top using the arcs found in the word
topping is illustrated in Figure 1. All the arc frequencies are
assumed to be equal to 1. Each complete path through the
lattice is called “pronunciation candidate”. We considered
only the shortest paths through the lattice [8]. If there was
unique shortest path, it was chosen as the best pronunciation
and the algorithm stopped. In the usual case when there are
several shortest paths through the lattice, it is necessary to
choose the best pronunciation candidate among them.
Therefore, the last but not least component of the algorithm is
the decision making function.

Figure 1. Lattice construction for the word top.

Each candidate can be represented as Cj={Fj,Dj,Pj} ,
where Fj = {F1,…,Fn} are the phoneme arc frequencies along
the jth path, Dj = {d1,…,dn} are the arc lengths and Pj =
{p1,…,pl} are the phonemes comprising the pronunciation
candidate, being l is the pronunciation length.

Marchand and Damper in 2000 [8] proposed to use 5
scoring strategies in order to choose the best pronunciation.
They will be explained with in more detail in the next section.
In the same work two ways of strategy combination were
introduced. Each strategy gives us a score for each candidate
and based on its score each candidate is assigned a rank.
According to the rank, each candidate is awarded points. If a
strategy gives the same score for several candidates, they are
given the same rank and the same number of points. There are
two manners of determining the winner candidate; the first one
is the sum rule, which chooses the candidate that has the
largest value of the sum of points for all of the included

strategies. The product rule chooses the candidate with the
largest value of product of the points awarded by each of the
included strategies. For NetTalk dictionary the best accuracy
obtained was equal to 65.5% for words and 92.4% for
phonemes, using all five strategies [8]. The sum and the
product rule seemed to give the similar results.

3. MULTI-STRATEGY APPROACH

In our work we have extended the study of the scoring
strategies implemented 6 new scoring strategies. All of the
scoring strategies, the original ones and the proposed ones
involve phoneme arc frequencies fi, arc lengths di, and pl the
phonemes of which the candidate consists.

The original 5 strategies [8] are:

1. Maximum arc frequency product (PF)

For each arc the corresponding arc frequencies are multiplied

, n is the candidate length, or the number of
arc of which the candidate consists. Rank 1 is given to the
candidate scoring the maximum PF().

2. Minimum standard deviation of arc lengths (SDPS)

 , where is the median arc length.

Rank 1 is given to the candidate scoring the minimum SDPS().
3. Highest same pronunciation frequency (FSP)

The privilege is given to the candidates that share the same
pronunciation with the others

 , rank 1
is given to the candidate scoring the maximum FSP().

4. Minimum number of different symbols (NDS)

This strategy gives preference to the candidates whose
phonemes appear in the majority of other candidates.

 , where l is the number of
phonemes in a pronunciation, δ is the Kroneker delta, which is
equal to 1 if and 0 otherwise, and N is the number of
candidates, rank 1 is given to the candidate scoring the
minimum NDS().

5. Weakest arc frequency (WL)

The candidate whose lowest arc frequency value is the highest

 , rank 1 is given to the candidate scoring
the maximum WL().

The proposed strategies are:

6. Weighted arc product frequency (WPF)

Similar to Strategy 1, but for each phoneme arc, Ak the
frequency of its appearance is divided by k, the number of
different phoneme arcs found in the dictionary for the
corresponding letter arc, Li. For example if our word, for
which we are searching for the pronunciation is #infinity# and
if in the pronunciation lattice we have a path that starts with a
letter arc, L1= “# in” and a corresponding phoneme arc A1=/#
@ N/ , whose frequency is equal to 12, in order to obtain the
weighted arc frequency , we have to divide 12 by the number
of different phoneme arcs available in the dictionary for the

— 150 —

V Jornadas en Tecnología del Habla

letter arc “#in”. Let us say that besides A1 we also found the
following phoneme arcs: A2 = /# I N/ and A3= /# _ n/. Then
the weighted frequency for A1 is WF(A1)= 12/3

7. Strongest first arc (SF)

The seventh strategy aims at capturing the analogy in prefixes.
The candidate with the highest frequency score for the first arc
is given rank 1.

8. Strongest last arc (SL)

This strategy is analogous to the previous one but for the
suffixes. The candidate with the highest frequency score for
the last arc is given rank 1.

9. Strongest longest arc (SLN)

The candidate who has at the same time the longest and the
most frequent arc is given rank1. First the longest arc is
chosen and if there is a tie the next step is to choose the most
frequent one. The candidate that have the longest and arcs
seem to be more reliable, and of course, the more frequent the
arc is the stronger is the analogy.

10. Same symbols multiplied by arc frequency (SSPF)

The tenth strategy is similar to the fourth one (NDS), but on
one hand when counting the common phonemes, we also take
into consideration the phoneme arc frequencies.
For every candidate the pronunciation is compared phoneme
by phoneme to other candidate pronunciations.
If a candidate has a common phoneme with other candidates,
we give it a higher score, depending also on the number of
times the phoneme arc containing that phoneme appears in the

dictionary .

11. Product frequency, same pronunciation (PFSP)

The combination of first and third strategy, here all the
candidates that share the same pronunciation obtain the same
score, which is equal to the combination of the scores assigned
to each one of the candidates by the first strategy

.

4. EXPERIMENTAL RESULTS

The experiments were performed on two dictionaries, NETtalk
and LC-STAR dictionary, used by the authors in previous
experiments.

The NETtalk has 20K of words, and it was manually
aligned by Sejnowski and Rosenberg publicly available at
[13]. The phonetic symbols used by Sejnowski and Rosenberg
are left unchanged.

The LC-STAR is a public dictionary of U.S. English,
created in the framework of LC-STAR project [7], we have
used only the common words (about 50 K). The phone set
used is SAMPA. [10]. No homonyms were considered for the
experiments. As usual, 90 percent of the lexicons were used
for training and 10 for test.

The first thing to do was to find out how each strategy
performed. The strategy mask is a binary string, where one
means the strategy is included in the final result and 0
otherwise.

The results for eleven strategies for both dictionaries are
given in Table 1.

Strategy mask/
Dict

NETtalk LC-STAR

Ph. acc. W. acc. Ph. acc. W.acc.

10000000000 89.70% 57.48% 94.76% 73.59%

01000000000 88.00% 50.59% 92.68% 65.31%

00100000000 89.95% 59.06% 95.60% 79.34%

00010000000 90.27% 57.43% 95.53% 76.73%

00010000000 88.56% 53.75% 94.07% 71.44%

00000100000 89.69% 57.02% 94.96% 75.05%

00000010000 89.15% 55.84% 92.95% 66.17%

00000001000 87.92% 50.28% 94.46% 72.26%

00000000100 88.68% 54.01% 92.82% 65.23%

00000000010 89.99% 58.30% 94.95% 74.61%

00000000001 91.14% 62.94% 96.01% 80.32%

Table 1. Results for each strategy for NETtalk and LC-STAR
dictionaries.

From the results above we can see that the strategies give
different performance of different dictionaries. The best
strategy is the proposed strategy 11 and the second best
strategy is the original strategy 3 for both dictionaries. For
NETtalk dictionary 2 proposed strategies and 3 original ones
made it to the top five strategy list while for LC-STAR
dictionary the top five strategies include 3 proposed and 2
original ones. As the next step we evaluated all possible
strategy combinations, in the strategy combination mask 1
means the strategy is included in the final decision and 0 the
strategy is left out.
For our implementation of the 5 original strategies the best
results obtained for NETtalk lexicon were 63.04% words and
91.02% phonemes correct, given the combination of first and
third strategies “10100” and 80.94% words and 96.07%
phonemes correct for LC-STAR lexicon and the same strategy
combination. These results are slightly different from those
reported in [8], as well as the scores obtained for each original
strategy with our system, but we believe that it is due to the
implementation nuances. The best word accuracy obtained in
[8] is 65.5% using all five strategies for NETtalk lexicon.The
top five combination results are given in Tables 2 and 3.

S. combination Ph. acc. W. acc.

11110010011 91.28% 63.50%

01110110011 91.24% 63.40%

01100010001 91.30% 63.40%

01100010011 91.29% 63.35%

00100010001 91.31% 63.35%

Table 2. Top five strategy combination results for NETtalk
dictionary.
As before, the top five results include proposed strategies.
Eleventh strategy is present throughout Tables 2 and 3 and its
contribution to improvement of overall score is the greatest for
both lexicons.

The best strategy combination results obtained are
higher than those previously obtained combining only the
original strategies. The word error rate decreased from 36.96%
to 36.5% for NETtalk and for LC-STAR from 19.06% to
18.78%. That’s between 1.5 and 2.5 percent of error decrease.

— 151 —

V Jornadas en Tecnología del Habla

S. combination Ph. acc. W.acc.

00101000001 96.13% 81.22%

01100001001 96.08% 81.12%

01111100001 96.11% 81.04%

01101001001 96.04% 81.04%

00101001001 96.09% 81.04%

Table 3. Top five strategy combination results for LC-STAR
dictionary.

To further explore the possibilities of improvement for
grapheme-to.-phoneme scores the transformation based
learning was applied to strategy combination.

The transformation-based error-driven algorithm (TBL)
originally invented by Eric Brill [2] consists in learning the
transformation rules from the training data that is labeled with
some initial classes. Using the TBL algorithm to correct the
prediction previously obtained by another classifier allows us
to capture the imperfections of previous approximations to the
linguistic irregularities into a set of context-dependent
transformation rules, where the context serves as the
conditioning features.
In our case we took the best combination of original strategies
as the initial prediction for LC-STAR dictionary to correct.
The additional features were letters, phonemes and also each
original strategy prediction per experiment. In order to obtain
training predictions, we used n-fold evaluation, with n equal to
the number of words in the dictionary. Each nth word was
removed from the dictionary and input as the unknown word
to the “pronunciation by analogy” system.
The best additional feature was found to be the “00100” or the
third prediction standing alone, and it gave 81.46% words and
96.21% phonemes correct, using the 4-letter context and no
constraints for correction. Constraints would limit the
algorithm to correct the erroneous phonemes only by the ones
previously seen in the training data. Using fourth and fifth
predictions gave a slighter improvement up to 81.04% and
81.12% words correct correspondingly. These results should
be compared to 80.94%, best result using only the original
strategies. We have also used all five predictions as additional
features but the improvements were not significant.
The results show that pronunciation by analogy captures very
well all the regularities in English orthography, not leaving
much room for improvement for the TBL method.
Comparing these results to previously obtained in [9], shown
in Table 4 we can conclude that PbA is the best grapheme-to-
phoneme method up to now.

Classifiers baseline
DT 67.47%
FST 79.38%
HMM 47.54%

PbA 80.94%

Table 4. Word accuracy for different grapheme-to-phoneme
methods.

The results above were obtained for the LC-STAR dictionary
using decision trees (DT) [1], finite state transducers (FST) [5]
and hidden Markov models (HMM) [10] and PbA classifiers.

5. CONCLUSIONS

This paper gives an overview of the pronunciation by analogy
method used for g2p. New scoring strategies were proposed
and the improvements were obtained based on these strategies.
The 1.5-2.5% of error reduction was reached in comparison
with the strategies used in [8]. The transformation-base
learning algorithm was applied and the results were analyzed.
New strategy combination methods were considered and slight
improvements attained. The fact that applying rule-based error
correction did not give important improvements allows
concluding that the PbA methods is capable of capturing quite
well the regularities in English orthography.

6. ACKNOWLEDGEMENTS

This work was sponsored by the Spanish Ministry of
Education (AP2005-4526) and AVIVAVOZ project.

7. REFERENCES

[1] Black A.W., Lenzo K. and Pagel V., “Issues in building
general letter to sound rules”, In Proceedings of the Third
ESCA workshop on speech synthesis, Jenolah Caves, W-S W,
Australia, 1998

[2] Brill E., “Transformation-based error-driven learning and
natural language processing: A case study in part of speech
tagging”, Computational linguistics 21(4), pp. 543-565, 1995

[3] Damper R. I., Marchand Y., Marsterns J.-D. and Bazin A.,
“Aligning letters and phonemes for speech synthesis” in
Proceedings of the 5thISCA Speech Syntesis Workshop,
Pittsburgh, 209-214., 2004

[4] Dedina, M. and Nusbaum, H. “Pronounce: a program for
pronunciation by analogy”, Computer Speech and Language,
Prentice-Hall, London, UK. 5:55—64, 1991

[5] Galescu L., J. Allen, “Bi-directional Conversion Between
Graphemes and Phonemes Using a Joint N-gram Model”, In
Proc. of the 4th ISCA Tutorial and Research Workshop on
Speech Synthesis, Perthshire, Scotland, 2001

[8] Glushko, R. J., “Principles for Pronouncing print: The
psychology of phonography. Lesgold and Perfetti“, 1981

[7] http://www.lcstar.org

[8] Marchand, Y. and Damper R.I. “A multi-strategy approach
to improving pronunciation by analogy”,Computational
Linguistics26(2)pp. 195-219, 2000

[9] Polyakova T., Bonafonte A., "Learning from errors in
grapheme-to-phoneme conversion", International Conference
on Spoken Language Processing, Pittsburgh, USA, 2006.

[10] Taylor P., “Hidden Markov Models for grapheme to
phoneme conversion”, In Proc. of Interspeech 2005, Lisbon,
Portugal, pp. 1973-1976, 2005

[11] Yvon, F., "Grapheme-to-phoneme conversion using
multiple unbounded overlapping chunks", In Proc.
NeMLaP’96, pp 218-228, 1996

[12] http://www.phon.ucl.ac.uk/home/sampa/

[13] ftp://svr-ftp.eng.cam.ac.uk/pub/comp.speech/

— 152 —

V Jornadas en Tecnología del Habla

