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ABSTRACT

A robust ASR system needs to perform well in different
environment and with different speakers. For this reason
speaker adaptation has become an essential part of a state
of art ASR system. Here we show how confidence mea-
surement technique can be used to improve the quality
of unsupervised speaker adaptation. An initial speaker-
independent system is adapted to improve the modelling
of a new speaker by modifying HMM parameters using

Maximum Likelihood Linear Regression(MLLR) technique.

Improvement gained from unsupervised speaker adapta-
tion technique are lowered because of their dependency
on the accuracy of recognition in first pass. We use con-
fidence measures to improve the performance by selec-
tive adaptation. We present experimental results on the 8
speakers’ data from Wall Street Journal.

1. INTRODUCTION

Even after significant amount of improvement in speak-
er independent speech recognition systems, error rates are
still quite higher when compared to speaker dependent
(SD) systems, and dependence on large amount of speak-
er specific data for training make SD unsuitable for many
application. Many system make use of speaker adaptation
techniques to adapt to new speakers. These techniques can
be either supervised, where the correct word transcription
of the adaptation data is known or unsupervised, where
it is not known. Unsupervised adaptation relies on recog-
nizer to provide a transcript for the spoken utterances in
the first pass, which is used to adapt the model during the
training. But these transcriptions contain recognition er-
rors and out-of-vocabulary words which degrade the per-
formance of adaptation technique. Confidence measures
can be used to classify the words in the recognized tran-
script as correct or incorrect, which allows the system to
use only those words for adaptation which are most prob-
ably correct.

The remainder of the paper is organized as follows: first,
we give a description of the MLLR technique for speaker
adaptation, next we give a brief description of the con-
fidence measurement technique and describe the use of

confidence measurement for MLLR adaptation, followed
by the details of experiments. We conclude this paper with
results and a summary of the work.

2. MAXIMUM LIKELIHOOD LINEAR
REGRESSION

Speaker adaptation applied to HMMs mostly involve
the techniques that uses the original models as the starting
point and add speaker specific information by transform-
ing some of the parameters in the models. The general
idea is that the fully trained model should contain some
general speech information which will be used for the new
system as well. It is also assumed that even the smallest
amount of adaptation data would contain some speaker
specific information.

The MLLR technique follows the above assumptions
for adapting only the mean vectors of continuous density
HMMs. However, the adaptation can also be performed
for the covariance matrices to improve the results. If a
transformation matrix can be estimated specifically for
the covariance matrix, it is likely that an improvement in
performance can be achieved by transforming the covari-
ances as well. A detailed discussion on this is presented in
[1, 2]. In this section we shall discuss the general theory
behind the MLLR technique and its evaluation given a set
of observation data.

The MLLR adaptation involves transforming the means
of the HMM Gaussians. This transformation is preformed
by applying a transformation matrix W. Therefore, giv-
en a gaussian s with mean p,, the adaptation consists of
re-evaluating the new mean (s as below:

s = Wisps (1

where W is the adaptation matrix for the gaussian s
and an offset(or bias) value, w, is introduced in the mean
vector. This gives us the extended mean vector, ji = [ws :
s]. Now the equation (1) can be modified to:

lfs = Wslzs )

here, if the dimension of p, is n, the dimension of Ws
would be n % (n + 1).
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The transformation can be evaluated for each gaus-
sian in the acoustic models. However, this would require
a huge amount of data for the adaptation process. To solve
this problem we group the gaussians into what is referred
to as regression classes, which are the sets of gaussians
which share the same transformation matrix. Regression
classes are discussed in detail in [3].

Therefore, for a given set of adaptation samples from
a particular regression class ¢, denoted by the sequence of

acoustic features vectors a:f = 21,23, ..., 2T, the adap-

tation matrix W for a Viterbi approximation can be esti-
mated as below:

T T
= O mupl)) O pspth,) 3)
t=1 t=1

where s; denotes the most likely state (and gaussian)
in the Viterbi path at time ¢ and p' is the transpose of the
mean vector.

3. CONFIDENCE MEASUREMENT

The speaker recognition systems that are available to
us are not completely free of errors. To develop an effi-
cient speaker independent speech recognition system us-
ing MLLR approach, we must have the knowledge about
the reliability of the recognized words. Therefore the goal
of confidence measurement is to detect words that are
likely to have errors in their recognition. In other words
confidence measurement would be used for each hypoth-
esized word to classify it as either correct or incorrect.
Such a classification is done using confidence measures,
which are essentially normalized scores to help the sys-
tem decide on the reliability of the recognized words. Fi-
nally, only those words, which have been tagged as cor-
rect would be used for the MLLR adaptation and hence
yield better results in the subsequent recognitions.

The Bayes’ decision rule is the fundamental rule in
all statistical speech recognition systems. The Bayes’ rule
is based on the posteriori probability p(wif|zT) of a word
sequence wM = wy,wa, ..., wps given a sequence of acous-
tic observations 7 = 1,3, ..., z7. That word sequence
[wM],p¢ which maximizes this posteriori probability would
also minimize the probability of an error in the recognized
sentence:

[wi"]opt = argmaz,,pp(wi” |z])

p(a] [wi") .p(wi’)
= argmaz,,m| 1|PZ$T) ]
1

= argmaz,,u [p(z] [wi").p(w]")]
where, p(wi?) denotes the language model probabil-
ity, p(zT |w) the acoustic model probability and p(z{)
is the probability of acoustic observations.

If all these posteriori probabilities are known to us, the
posteriori probability p(wp, |z1) for a specific word wy,
could be estimated by summing up the posteriori proba-
bilities of all sentences wi containing this word at posi-
tion m. This posterior word probability can now be used
as an efficient measure of confidence.

The probability of the sequence of acoustic observa-
tions p(z¥) is normally omitted since it is invariant to
the choice of a particular sequence of words. Thus, the
decisions during the decoding phase are based on unnor-
malised scores. These scores can be used for a comparison
of competing sequences of words, but can not be used to
predict which of the recognized words are correct. The es-
timation of probability of the acoustic observations thus,
is the main problem for the computation of confidence
measures.

The usefulness of word graphs in confidence measure-
ment is well known. In [4] the proposed features based on
word graphs are the most important predictors. In [5] the
confidence measure is estimated on word graphs directly
by the posterior probability of a hypothesized word given
all the acoustic observations of the utterance. The word
posterior probability based on word graphs is used in [6]
along with a large set of other authors use a single word
graph which is obtained through the recognition process.
We have used single word graphs for the evaluation of
confidence measures in our experiments and an overview
of estimating the posterior probabilities based on a single
word graph is discussed below.

3.1. Posterior probabilities on word graphs

A word graph G is a directed, acyclic, weighted graph.
The nodes corresponds to discrete points in time. The
edges are triplets [w, s, €], where w is the hypothesized
word from node s to node e. The weights are scores asso-
ciated to the word graph edges. Any path from the initial
to the final node forms a hypothesis h.

Given the acoustic observations élT, the posterior prob-
ability for a specific word (edge) [w, s, €] can be com-
puted by summing up the posterior probabilities of all hy-
potheses of the word graph containing the edge [w, s, €]:

P(w, 5, ¢] | 67) (é) S P, 6T) @
hEG
Jw’, s, e']:

w =w,s =s,e'=e

The probability of the sequence of acoustic observa-
tions P(©7) can be computed by summing up the poste-
rior probabilities of all word graph hypotheses:

= P(h,6]) (5)
h

These posterior probabilities can be efficiently com-
puted based on the well-known forward-backward algo-
rithm [5].
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3.2. Scaling of the probabilities

In the evaluation of confidence measures for the rec-
ognized words we also include a scaling factor & which
plays an important role in the evaluation of the posterior
probabilities and their performance as a confidence mea-
sure. If the acoustic model probabilities are not scaled ap-
propriately, the sums of the equations mentioned above
will be dominated by only a few word graph hypothe-
ses because of very large dynamic range of the acoustic
scores (which is the negative logarithm of the unnormal-
ized acoustic probabilities). The differences in acoustic
scores arise mainly due to the variance of acoustic fea-
tures which are presumable underestimated. To avoid the
re-evaluation of these variances, it is better to scale the
acoustic probabilities in order to have efficient results.
Training data for each speaker was tested for different
values of a to decide on the optimum ¢« value for each
speaker, a giving the minimum Classification Error Rate
(CER) for a speaker was taken to be optimum. Same val-
ue of scaling factor was used during the testing phase for
each speaker.

3.3. Threshold for confidence scores

The confidence measurement technique gives us a score

(or probability) of a word’s reliability. The system now
sets a certain threshold 7, a value between 0 and 1 (prob-
ability score) for each speaker in the corpus after analyz-
ing the Classification Error Rate (CER) for each speaker
separately. Threshold for a given speaker and given « is
the probability score which gives the minimum CER. All
words recognized for a given speaker, which have their
confidence measures above this threshold are classified as
correct while the ones having their measures below this
threshold are labeled incorrect. The correct words are now
the ones that are used for the MLLR adaptation.

4. EXPERIMENTS

We performed some interesting experiments with con-
fidence measures and MLLR technique. Wall Street Jour-
nal was used for all the experiments. Recognition was per-
formed using a trigram language model and 20k lexical
model using iATROS, an HMM based continuous speech
recognizer. First different parameters of the recognizer
were optimized to give low word error rate. Acoustic scal-
ing factor, «, used for confidence measurement, was op-
timized for each corpus to give better confidence scores
and baseline word error rates were determined for each
speaker.

Experiments were made with the following kind of train-
ings.

1. Full MLLR: This is the standard MLLR adapta-
tion. We use all the time frames to train the models,
thus includes error from the recognizer. This gives
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us a base on MLLR adaptation on which we try to
improve using confidence measure.

MLLR with Confidence Measure: In this we ap-
ply confidence measure on the output of the rec-
ognizer before estimation of the adaptation matrix.
Only time frame of high confidence words were
used for adaptation. Experiment was done with two
different types of gaussian means.

s Max: It is the standard method, means from
the most probable gaussian in the gaussian mix-
ture of the HMM state were used during adap-
tation.

= Normalized: Instead of using the means only
from the most probable gaussian and ignor-
ing the means from the rest of the mixture,
we use a normalized mean from all the gaus-
sians of the mixture. We normalize the means
of the gaussian mixture by taking the means
from each mixture in the ratio of its emission
probability, i.e. in ration of its contribution to
the state emission probability.
Assume a mixture having N gaussians and let
fi; denote the ith mean from jth mixture, let
p; be the probability of emission of the ob-
served feature frame by jth gaussian and p; be
the probability of emission of the state, sum of
emissions of all gaussians. Then normalized
mean g} is given by the following expression.

N
o
p=> i
= Dt

Normalized means has given better results for
some speakers than using the means from max-
imum gaussian.

MLLR with ideal CM: We performed this experi-
ment to find the upper limit which can be achieved
through MLLR in unsupervised training. In this on-
ly the frames of correctly recognized words were
used in calculating the adaptation matrix. We used
the correct transcription to compare the recognition
output and only correctly recognized words were
used for the adaptation. Experiments were perfor-
mend using means from the most probable gaus-
sian (Max). The results were very close to the su-
pervised training.

Supervised (Ideal Recognizer): Lastly, we performed
supervised training on the corpus. This was done by
performing forced recognition with the actual tran-
scription of the sentences as language model during
training. The case idealizes a recognizer and gives
an upper limit that can be achieved using MLLR
adaptation technique.
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Speakers || Baseline | Full | Max | Norm | Improvement | Correct | Supervised ]

46h 39.94 | 3465 [ 3333 | 3282 | 528% 3291 3247
470 3252 [ 29.60 | 2955 | 2985 | 0.17% 2893 | 28387
47h 1426 | 1237 | 1225 | 1252 | 097% 1146 | 11.56
47n 5285 | 4136 | 4037 | 4081 | 239% 3870 | 3470
48r 1063 | 963 | 9.76 | 986 | -1.34% 8.83 8.69
48v 1833 | 18.19 | 1833 | 17.83 | 198% 17.71 17.56
49n 928 | 882 | 893 | 898 | -1.22% 7.40 7.40
4am 3126 | 22.92 [ 2213 | 2175 | 5.10% 2192 | 2198
[Average || 2651 [22.19 [ 21.83 [ 21.80 | 1.66% | 2098 | 2040 |

Table 1. The numbers indicate the WER and the improvement is the relative decrease in the WER while comparing
the Full and the minimum of Max and Norm values. The figures under Full indicate the results for MLLR adaptation
without the use of confidence measurement, while those under Max are the results for MLLR adaptation using CM with
most probable means, and the figures under Norm represent the results for MLLR adaptation using CM with normalized

means.

5. RESULTS

Experiments were performed on data from 8 differ-
ent speakers of Wall Street Journal corpus, each having
about 150 utterances. During the training phase 50 sen-
tences were used and testing was done with the remaining
100 sentences. MLLR training is done using a single re-
gression class for all the frames. We obtained significant
improvement in word error rates in case of some speakers
after using confidence measures. We gained a relative im-
provement as high as 5 % in some cases when compared
with MLLR technique without using confidence measures.

Also we observed adaptation using normalized means
outperformed most probable gaussian’s mean (Max), for
some speakers. Although on an average, their performances
are comparable. A more detailed study is needed for se-
lection criteria between normalized and maximum prob-
able gaussian mean. We also observed MLLR with on-
ly correct words (ideal CM) gave word error rate very
close to those obtained with supervised adaptation. Table
1 summarizes the results.

6. CONCLUSIONS AND FUTURE WORK

In this work we have shown that use of confidence
measures for MLLR adaptation improves the adaptation
performance. We have also shown that normalizing the
means of gaussian mixture can be an alternative, though
more experiments have to be performed to judge the se-
lection criteria for the types of mean. We have shown
the performance of supervised adaptation is superior than
other unsupervised adaptation, because supervised MLLR
is able to reduce the mismatch between the acoustic mod-
els and acoustic vectors of incorrectly recognized words
in first pass. We also found the performance of unsuper-
vised adaptation with only correct words is close to that of
supervised, thus shows a good confidence measure tech-
nique can raise the level of unsupervised MLLR adapta-

tion. In future more experiments can be done using differ-
ent regression classes and affect of different confidence
measurement parameters can be tested to see the improve-
ment.

7. REFERENCES

[1] C.J. Legetter and P.C. Woodland, “Maximum likeli-
hood linear regression for speaker adaptation of con-
tinuous density hidden markov models,” Computer
Speech and Language, pp. 171-185, 1995.

[2] CJ. Legetter and P.C. Woodland, “Flexible speak-
er adaptation for large vocabulary speech recogni-
tion,” Proceedings EUROSPEECH95, pp. 1155-
1158, 1995.

[3] M. Pitz, F. Wessel, and H. Ney, “Improved mllr
speaker adaptation using confidence measures for
conversational speech recognition,” Proceedings of
ICSLP, pp. 548-551, 2000.

[4] T. Kemp and T. Schaaf, “Estimating confidence using
word lattices,” Proceedings of EUROSPEECH, pp.
827-830, 1997.

[5] F. Wessel, “Confidence measurement for large vocab-
ulary continuous speech recognition,” IEEE Trans.
on Speech and Audio Processing, pp. 9(3):288-298,
2001.

[6] D. Vergyri, “Use of word level side information to
improve speech recognition,” Proceedings of ICAS-
SP, pp. 1823-1826 vol.3, 2000.

— 258 —



