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ABSTRACT 

 
In this paper we present a mechanism to incorporate support vector 
machine (SVM) based phone posterior estimates in the 
computation of posterior probabilities over syllable lattices. A 
continuous speech recognizer is used to generate a syllable lattice. 
Using the state alignment information associated to each syllable 
in the lattice, SVM-based posteriors are calculated for each phone 
and then combined to obtain syllable posterior probabilities. 
Finally, these probabilities are incorporated into the computation 
process of posterior probabilities over syllable graphs using the 
forward-backward algorithm.  

Experimental results show that the SVM-based confidence 
measures computed over syllable lattices can substantially reduce 
the classification error rate of HMM-based state-of-the-art 
confidence measures.  
  

Index Terms— Confidence annotation, machine learning, 
support vector machines, posterior probabilities, syllable lattices 
 

1. INTRODUCTION 
 

The rapid development of speech technology in the recent years 
has enabled the development of a wide variety of speech 
applications. Unfortunately speech recognition results are still far 
from perfect, which, for practical applications, requires the use of 
confidence annotation techniques that help in the detection of 
misrecognized words. In our previous work [1] we have introduced 
a children’s speech reading tracker that makes use of a syllable 
rejection module to classify syllables in a reference string as 
correctly or incorrectly read. In this article we have tried to 
improve the performance of this rejection module by integrating 
SVM-based posterior estimates in the computation of posterior 
syllable probabilities over syllable lattices.  

Recently, SVM-based classifiers have been successfully 
applied for N-best lists rescoring at the output of a conventional 
HMM decoder [2]. These classifiers produce posterior class 
probability estimates that can also be used to generate confidence 
annotation labels. Previous work has shown [3] that confidence 
measures based on word posterior probabilities estimated over 
word graphs outperform alternative confidence measures [4] such 
as acoustic stability and hypothesis density. In this article we try to 
incorporate syllable posterior probability estimates obtained from 
SVM classifiers into a posterior probability computation procedure 
over syllable lattices.  

In section 2 we present three different SVM-based phonetic 
classifiers and show how they can be used to generate syllable 

posterior probabilities. In the next section we define three different 
confidence measures resulting from the integration of those 
syllable posteriors into the computation of posterior probabilities 
over syllable graphs. Finally, we compare the performance of the 
confidence measures proposed with an HMM-based confidence 
measure taken as baseline and present our conclusions. 
 

2. SVM FOR SYLLABLE CONFIDENCE ESTIMATION 
 
An SVM learns the decision boundary between samples belonging 
to two classes by mapping the training sample vectors into a higher 
dimensional space and then determining an optimal separating 
hyper-plane [5]. When SVMs are used in classification tasks for 
speech processing applications it is necessary to map the margin or 
distance they produce to a posterior class probability. This can be 
done by the use of a sigmoid [6], where the parameters A and B 

eed to be estimated by cross-validation. n
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In the context of syllable classification, this posterior probability 
can be used to express the probability that a sequence of speech 
frames belongs to a syllable class. In our case, due to the 
considerable number of syllables present in the speech corpora, we 
decided to use SVMs to calculate posterior phone probabilities and 
combine them to calculate syllable posterior probabilities. We do 
not attempt to model coarticulation. 
 
2.1. Phonetic classification 
 
We have proposed 3 different phonetic classifiers. The simplest 
one (2) consists of training an SVM classifier for each phone using 
speech features directly as training vectors. This way, the 
probability of a phone ph given the sequence of feature vectors 
x1

T= {x1,x2,…,xT} to which it is aligned, is estimated as the average 
of the posterior phone probabilities obtained from the SVM for 
each of its frames. 
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In the second approach (3) we have tried to take advantage of the 
state alignment information produced by an HMM aligner to 
capture the time-varying structure of a phone, which is missing in 
the previous approach. We use the Sonic speech recognition 
system for the alignment [10]. Sonic uses 3-state HMM phone 
models. Feature vectors aligned to each state of a phone are 
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averaged and the resulting average vectors are concatenated to 
form a composite vector that is used to train the SVM classifier. 
The dimension of this vector is, consequently, three times the 
dimension of the original feature vectors. A similar approach was 
proposed in [2], but assigned a fixed percentage of the frames 
aligned with a phone to each state. 
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The third approach (4) uses the phone temporal structure 
information while still using speech features directly as training 
vectors for the SVM classifier. The later consideration is important 
since, as we will see later, the averaging process carried out in the 
second approach prevents the reuse of SVM predictions across a 
lattice time frame. This procedure is more computationally 
expensive and significantly deteriorates the real time performance. 
Hence, three SVM classifiers are trained for each phone, each of 
them trained with the speech features from a different state. 
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2.2. Syllable classification 
 
As expressed in (5), syllable posterior probabilities are calculated 
by averaging phone posterior probabilities. 
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By using the three phonetic classifiers presented in section 2.1 as 
the phone posterior probability, we define the following posterior 
syllable probabilities: pframes(syl|x1

T), psegments(syl|x1
T) and 

pframes/states(syl|x1
T), that can be used as syllable classifiers. 

  
3. EXPERIMENTS FOR SYLLABLE CONFIDENCE 

ANOTATION 
 
Experiments were carried out to evaluate the accuracy of the 
phonetic and syllable classifiers proposed. 
 
3.1. Speech material  
 
We present experimental results on the CU Read and Summarized 
Story Corpus [8]. We have selected speech belonging to first and 
second graders (a total of 171 and 57 speakers respectively) and 
partitioned it into a training set containing 9 hours of audio and a 
test set of about 2 hours of audio.  
 
3.2. Training and parameter selection 
 
For every speech segment present in the training set, 39-
dimensional feature vectors, consisting of 12 Mel Frequency 
Cepstral Coefficients and energy plus first and second order 
derivatives, have been extracted. The children’s speech corpora 
available is tagged at the word level only so phone boundaries are 
obtained using a Viterbi-based phonetic alignment against the 
transcriptions. 

SVM classifiers are well suited for two-class separation tasks, 
however for n-class (n>2) separation tasks, like building a phonetic 
classifier, n SVM classifiers need to be trained. In this case we 
have selected a “one vs. all” approach in which up to three SVM 

classifiers [9] are trained for each of the 55 phonetic symbols used. 
For the training of each SVM, half of the data points (positive 
samples) belong to the actual class while the rest belong to the 
remaining classes (negative samples). 

A radial basis function (RBF) kernel is used for which the 
parameters C (cost) and  are estimated over the training set with a 
“grid-search” process using 5-fold cross validation. 
 
3.3. Phonetic classification 
 
The first experiment conducted evaluates the classification 
accuracy of the three phonetic classifiers proposed. For evaluating 
the classifiers we created a test set that contained 500 positive 
examples and a balanced set of 500 negative examples for each of 
the 55 phones used. In the test set, each instance is assigned a 
phone label (half of which are correct labels). For each of the 
classification algorithms, 55 classifiers (corresponding to one-vs-
rest classifiers for each phone) were trained. For each instance, the 
classifier corresponding to the phone label for the instance is used 
to assign a probability of the phone given the data. This score is 
compared to previously trained thresholds (phone-dependent) to 
classify the phone occurrence as belonging to the phone class or 
not. Figure 1 shows the classification accuracy for each 
classification algorithm and every phone class.  
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Figure 1. Phonetic classification accuracy for the three classifiers 

proposed 
 
In table 1 we summarize the average classification results across 
the whole phonetic symbol set for the proposed classifiers. As 
expected, the segment-based approach yields the best classification 
accuracy, followed by the frame-based approach that makes use of 
state alignment information. An interesting detail observed is that 
the trained threshold used in the decision making process varies 
greatly between phones. This suggests that score distribution 
information for each phone could be incorporated in the syllable 
classifier for improved accuracy. 
 

Approach Average accuracy (%) 
Pframes(ph|X) 86.67 
Psegmentss(ph|X) 95.20 
Pframes/states(ph|X) 90.87 

Table 1. Average classification accuracy across the phonetic 
symbol set 
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3.4. Best single path confidence annotation 
 
In this experiment we compare the classification accuracy of the 
three syllable classifiers proposed in section 2.2. The experiment 
consists of running a decoding process using Sonic [10]. The 
single best scoring path is then annotated with posterior syllable 
probability estimates. In this experiment, the confidence 
annotation uses only the state alignment information of the best 
single path and no lattice information or language model 
probability is used. The Figure 3 shows a comparison of the 
syllable classifiers using Detection-Error Tradeoff curves that 
contain a plot of the false acceptance rate over the false rejection 
ate. r
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Figure 2. DET curves for lattice based posterior probabilities. 

 
Surprisingly, despite the observed difference in classification 
performance of the three phonetic classifiers used as a basis for the 
confidence annotation, the curves depicted are very similar. This 
can be observed especially in the most relevant area of the graph, 
i.e.  for FRR < 10. However, the segments-based classifier yields a 
slightly better accuracy for syllable confidence annotation. 
 

4. COMPUTATION OF SYLLABLE POSTERIOR 
PROBABILITIES OVER SYLLABLE LATTICES 

 
In this section we discuss the mechanism for incorporating the 
SVM based phone posterior estimates presented in section 2 in the 
computation of posterior probabilities over syllable lattices. 

Initially we describe briefly the typical computation 
procedure of syllable posterior probabilities over syllable lattices. 
The posterior probability  p([syl;s,e]|X)  for a syllable can be 
calculated as defined in (6) by summing up the posterior 
probabilities of all paths in the lattice of length M which contain 
the hypothesis [syl;s,e].  [syl;s,e] is the syllable starting at time s 
and ending at time e, and X={x1,…,xT} is the acoustic observation 
sequence against which it is aligned.  
 

1

1
1

1
1

[ ; , ] : 1
{1,..., }:

[ ; , ] [ ; , ]

( | ) ( | )
([ ; , ] | )

( )

m

m

M

n n n

M
e m
s m m

T m
T

syl s e
n M

syl s e syl s e

p x syl p syl syl
p syl s e x

p x

                                                                                                      (6) 

Typically these posterior probabilities are calculated very 
efficiently over syllable graphs using the forward-backward 
algorithm as described, in the case of words, in [3] and [7]. This 
algorithm considers edges in the graph as HMM-like states, where 
emission probabilities are the HMM acoustic models scores and 
transition probabilities between links are obtained from the 
language model used.  

We have proposed an alternative computation procedure (7) 
where the HMM acoustic scores for each syllable are substituted 
by the posterior syllable probabilities produced by the SVM 
syllable classifiers defined in section 2. We realize that this is 
replacing a quantity that represents P(observations | syllable) with 
a quantity that is a direct estimation of the posterior probability 
P(syllable | observations). We believe that these posterior syllable 
probabilities, given the equality assumption for the prior class 
probability made in the construction of the SVM classifiers that 
produce them, can still be effectively combined with language 
model probabilities in the computation of posterior probabilities 
over syllable graphs. 
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       (7) 
 
In (6) and (7)  represents the acoustic score scaling factor while  
represents the language model probability scaling factor. These 
parameters are necessary to compensate the different dynamic 
range of acoustic and language model scores, and need to be 
estimated over a cross-validation set independent from the test set. 
However, previous work [3] has demonstrated that posterior 
probabilities calculated as (6) or (7) do not produce satisfactory 
results. The reason is that the fixed starting and ending time frames 
of a hypothesis syllable strongly determine the paths involved in 
the calculation of the forward-backward probabilities. Usually, 
syllable hypotheses with similar starting and ending time frames 
represent the same syllable; it therefore makes sense to consider 
the summation of the posterior probabilities of these syllables as a 
confidence measure. For this reason we have used a confidence 
measure (8) proposed in [3] for which the posterior probability 
accumulation process is carried out over all the time frames of the 
hypotheses under consideration. After the accumulation process is 
done, the highest probability value is selected as a measure of 
confidence.  
 
             (8) 

max
max

1{ ,..., } [ ; ', ']: ' '
([ ; , ]) max ([ ; ', '] | )T

e s e
syl s e s e e

C syl s e p syl s e x

 
By substituting in (7) the three posterior syllable probabilities 
defined in section 2.2 and applying the probability accumulation 
process defined in (8) we define the following respective 
confidence measures: CSVMframes[syl;s,e], CSVMsegments[syl;s,e] and 
CSVMframes/states[syl;s,e]. The performance of these confidence 
measures will be evaluated in section 5 against a baseline 
confidence measure computed combining expressions (6) and (8) 
and referenced in the following as CHMM[syl;s,e].  
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5. EXPERIMENTS FOR LATTICE BASED POSTERIOR 
PROBABILITIES 

 
In this experiment we compare the performance of the three SVM-
based confidence measures proposed in section 4 against an 
HMM-based one, also described in section 4, which constitutes the 
baseline. All these confidence measures make use of lattice 
information so all of them are applied after an initial step of 
syllable lattices generation using the SONIC continuous speech 
recognizer. For all of them the scaling factors  and  has been 
trained over a development set different than the test set. The 
experimental set-up is the same as described in section 3.  

In addition to the use of DET curves, the metric selected to 
evaluate these confidence measures is the classification error rate 
(CER) defined as the number of incorrectly assigned tags (which 
comprises false acceptations and false rejections) divided by the 
total number of recognized syllables. In figure 3 we show the DET 
curves of the confidence measures CSVMframes[syl;s,e] and 
CHMM[syl;s,e] (the baseline). The reason for not depicting the other 
two SVM-based confidence measures (CSVMsegments[syl;s,e] and 
CSVMframes/states[syl;s,e]) is that their respective DET curves almost 
completely overlap with the CSVMframes[syl;s,e] in the graph so cant 
be distinguished. However, the best confidence error rates (CER) 
for all of them are shown in Table 2. 
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Figure 3. Detection-error tradeoff curves for lattice based 

posterior probabilities. 
 

Confidence Measure CER Relative error 
reduction (%) 

CHMM[syl;s,e] (baseline) 11.43  
CSVMframes[syl;s,e] 9.68 15.16 
CSVMsegments[syl;s,e] 9.63 15.60 
CSVMframes/states[syl;s,e] 9.35 18.05 

Table 2. Confidence error rates and relative error reduction respect 
to the baseline for the different confidence measures proposed. 

 
As can be seen in Figure 3, the SVM-based confidence measures 
clearly outperform the HMM-based one used as baseline. In 
particular, the CER of the SVM-based approaches is at least 15% 
better than the baseline. Another interesting point is that, despite 
the considerable differences in classification accuracy observed in 
the phonetic classifiers (see Table 1) in which these confidence 

measures rely, their CER is very similar. Considering this 
similarity, in the context of a real world application, the 
CSVMframes[syl;s,e] is the most interesting one because the SVM-
predictions at the frame level can be shared during the calculation 
of posterior class probabilities of overlapping phones in the lattice. 
Note that in the CSVMframes[syl;s,e] confidence measure computation 
is also possible to share a good number of SVM-predictions (the 
amount of predictions reused strongly depends on the lattice 
density). However for the computation of CSVMsegments[syl;s,e], due 
to the averaging process necessary for creating the composite 
vectors, no SVM-predictions can be reused so the real time 
performance deteriorates significantly when the lattice density is 
relatively high.  
 

6. CONCLUSIONS AND FUTURE WORK 
 
An effective way to incorporate SVM-based posterior probabilities 
in the computation of posterior probabilities over syllable graphs 
has been introduced. The new confidence measures presented 
clearly outperform existing ones in the experiments carried out. 
Moreover, these confidence measures can be used not only for 
rejection tasks but for lattice rescoring. Future work will be 
focused to the use of these confidence measures not only for 
building a syllable rejection module as part of our children’s 
speech reading tracker but for increasing the information available 
in the algorithm we are currently using for aligning syllable 
lattices against multiple pronunciations graphs of syllables. 
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