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Abstract

The most widespread techniques for speech syntlzsis
voice conversion are currently based on probaiailist
frameworks. Particularly, Hidden Markov Models (HMM
play a relevant role in speech synthesis, whereass&an

Mixture Models (GMMs) are almost standard in voice

conversion. Consequently, in both cases the perfmwenaf
the systems is limited by three main factors: ¥) shitability
of the statistical models; 2) the over-smoothingrpimenon;
3) the accuracy of the underlying speech paranzetésin and
reconstruction method. This paper focuses on thd tbsue,
still open at present: translating speech frames parameter
vectors with good properties for the mentioned istiasl
frameworks, and reconstructing waveforms propefije
proposal presented in this paper uses the Harmagilics
Noise Model (HNM) to extract MFCQg and reconstruct

speech frames from them. The results of a perckptua

evaluation show that the tool is valid for statetod-art
HMM-based speech synthesis systems.

Index Terms: speech parameterization, statistical parametric

speech synthesis, voice conversion, harmonics phise
model

1. I ntroduction

Speech parameterization and reconstruction is admpit at
present, mainly because of the great developmemspeéch

synthesis systems based on HMMs [1][2] and voice

conversion systems based on GMMs [3][4][5][6]. Ténes
statistical frameworks require the input signalbéatranslated
into tractable sets of vectors with good propertigws, Mel-
frequency Cepstral Coefficients (MFCCs), which are kméov
work well in many areas of speech technologies, ase
widely used for modeling spectra in synthesis amalversion
systems [1][5]. Apart from their spectral modelicapability,
one of their main advantages is that they allowmgisiiagonal
covariance matrices, since the individual compomémteach
vector are highly uncorrelated. Other types of peters such
as Line Spectral Frequencies (LSFs) are often useabice
conversion [4][6]. Nevertheless, there is not aquei way of
extracting parameter vectors from speech framed, een
less a unique reconstruction procedure. Vocodingtilsan
open topic for research, as both, parameter ekdra¢tom
speech signals and speech reconstruction from péeam
have an immediate impact on the overall performasfctne
systems. This problem can be considered to be immpertant
in speech synthesis than in voice conversion, wtete
original utterance of a source speaker is availégbart from
the statistical models) and provides some inforomathat can
be used as a starting point. Therefore, this pamer the
research work behind it have been focused espedaallthe
former.
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In the particular case of HMM-based speech synthes
many ways of parameterizing speech signals hava peé
into practice during the last fifteen years. In thasic
implementation of HTS (the publicly available HMMded
Speech Synthesis System [7] based on HTK [8] aiginatly
conceived at Nitech), the spectrum was modelecdutiiraviel-
frequency Cepstral Coefficients (MFCCs) obtained vid-Me
generalized cepstral analysis [9], whereas a vémyple
pulse/noise excitation based fymwas used [10]. Subsequent
improvements on that primary model consisted imgisa
more sophisticated mixed excitation [11][12]. Mataal. [13]
used an even more sophisticated trainable mixedation
based on state-dependent filters for pulses andendn a
recent work, Drugman et al. [14] used a two-banckechi
excitation in which the upper band contained naied the
lower band was modeled through deterministic wave$o
chosen via principal component analysis. In [154 §b6], a
harmonics + noise decomposition of the signalfit§ektead
of the excitation) was used as a support for pamme
extraction and waveform reconstruction. In boththefm, the
parameters used for training were based on lineagtigtion.
Some other works focused on glottal source and |Ivivaet
instead of spectrum and excitation [17][18][19]. n&0
attempts were also made to integrate the pararegtection
step into the statistical modeling step [20]. Plapathe most
popular solution is the one based on Straight,gh-Quality
vocoder that decomposes signals into a spectralepw (free
of interferences frorfy) and an excitation given Byand a so-
called aperiodic envelope [21]. Straight's outpaits usually
converted into adequate parameters such as MFCOsaad
aperiodicities [22]. However, it is worth mentiogirnthat
Straight is a proprietary software.

This paper presents a tool that extracts MFgGrom
speech frames, and vice versa, assuming a Harmghiss
Noise Model for speech waveforms [23]. The tool basn
specifically designed to be integrated into HTS.eTh
implemented method has the following interestingperties:

- It allows extracting high-order MFCCs.

- It does not require excitation parameters othean tha

- It achieves considerably high perceptual quality in

resynthesis.

- It allows several speech manipulations and modiboa.
The waveform reconstruction procedures can be
implemented to be very efficient, which is helpfat
synthesis time.

The perceptual tests performed to evaluate theinomlspeech
synthesis application show that its performancsoimparable
to that of Straight, and thus can be used in sththe-art
synthesizers. Moreover, we plan to make the toeklyr
available during the following months. The mentidmeethod
is described in detail in Section 2, and the resuit its
preliminary evaluation are presented in sectionFmally,

Section 4 shows the conclusions of this paper.
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2. Description of the method

The method is based on the decomposition of sp&aates
into a harmonic part and a stochastic part, whiak proposed
by Laroche et al. [24]. The harmonic component wagst the
locally periodic part of the signal that resultonfr the
vibration of the vocal folds. It is modeled throughset of
harmonically related sinusoids. The stochastic comept
contains all the signal events that cannot be cagtby the
harmonic one, such as aspiration noise, bursts, letcs

usually modeled as white Gaussian noise passiraughr a
shaping filter.

slt) =2 A 1) o2t (t) + 1))+ elt)

This mature speech model and its associated digwsitand
methods [23] (a different implementation for opgmgtunder
a constant frame rate, which is more appropriatehis task,
can be found in [25]) provide a valid high-quality
parameterization for speech analysis, modificatiand
reconstruction. However, such a parameterizatiomaisdly
usable in a statistical framework for several reasteing the
most important ones the following [16]:
- The number of harmonics inside the analysis band is
variable and depends &n
- The resulting number of parameters is high=100Hz
means 50 harmonics between 0 and 5 kHz, each waee gi
by its own amplitude and phase).
- The variability of the amplitudes and phases wibpect
to fy is extremely high.
Therefore, the model is not suitable for direct esgbe
parameterization in the mentioned statistical fraors,
although it can be used as a support for extracithgr types
of parameters, as done in previous works [15][T6je next
subsections describe the proposed analysis andgtaotion
procedures.

1)

2.1.

During the analysis step, given an input signad, amalysis
frame rate, and the order of the parameterizatiom,system
calculates one fO value and one MFCC vector for &ache.

The first step of the analysis procedure is pitetedtion.
In this case, a modified version of the autocotiefabased
algorithm presented in [26] is used for extractihg localf,
and determining whether the current frame is voiaed
unvoiced. The modifications introduced into the goral
algorithm aim at increasing the estimation accuthoyugh a-
posteriori local refinements using shorter analygisdows
and considering the slopes of the complex amplguafethe
harmonics at low frequencies, as proposed in [24].

Voiced and unvoiced frames are treated in a diffeveay
to extract their MFCC representation. If the inpanie has
been classified as voiced by the pitch detectotymcal
harmonic analysis (based on least squares optimiz§23])
is performed on the full analysis band to get tlog-|
amplitudes of the harmonics at multiple frequenoiefs. Note
that the amplitudes can be interpreted as discateples of
the actual spectral envelope. Even at high fregesr{close to
the Nyquist frequency), which carry noise-like sfn
components according to conventional HNM, the haimo
analysis is assumed to provide valid samples ofsfiectral
envelope. Unvoiced frames are analyzed througmaplsifast
Fourier transform (FFT). Optionally, the resultisgectrum
can be smoothed within certain bands. In ordetadgenize
both types of output, the envelope given by themlaic
amplitudes obtained for voiced frames is resamptetie FFT

Parameter extraction
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resolution via interpolation. Although past reséasbows that
linear interpolation between log-amplitudes is aatel
enough for some applications such as pitch modifina
[27][25], sinc-based interpolation is used heréntrease the
consistence of the analysis (see Figure 1 for Idgtadis there
is no reliable spectral information at frequendietow f,, an
extra artificial harmonic with the same amplitude the
fundamental one is added at 0 Hz before interpaatiA
similar strategy was followed in [27] and gave good
perceptual results. The resulting spectral envalgb®uld be
very similar to those calculated by Straight [248€ Figure 2),
and therefore have the same potential advantagssjynthe
fact that they allow estimating high-order MFCCs.

Next, the amplitude spectra are amplitude-normdlize
according to a multiplicative factds™” (in unvoiced framed,
is given the valué/L, wheref; is the sampling frequency and
L is the analysis window length). This normalizati@s
necessary to eliminate the dependency of the amdglifrom
fo, which allows resynthesizing the signal fgtvalues other
than the measured one. Note that two signals hatimgame
energy and spectral envelope show harmonic ampktud
proportional to their pitch. The explanation is gl for a
given bandwidth, at highds the energy of the signal has to be
supplied by fewer harmonics, so their amplitude thase also
higher.

During the last step of the analysis, cepstral fanehts
are extracted from each amplitude spectrum aswvislid-irst,
the traditional cepstrum is obtained as the invdfeerier
transform of the log-amplitude spectrum, and thes i
dimension is reduced and the warping factor of dbpstral
parameterization is transformed to match the Melesasing
the recursion described in [9]. Although other wagk
calculating MFCCs from discrete points of the speuntiere
also explored [28], informal tests consisting afualizing the
ripple of the MFCC curves at low frequencies led he t
choice of the mentioned solution.

2.2.

The first step consists of generating the noise pérthe
signal, which is present in both, voiced and unediframes.
The noise is obtained through inverse FFT aftenitding the
FFT spectrum from the MFCCs. The FFT module is okthin
by sampling the MFCC envelope at a reasonable résolut
(100 Hz), interpolating linearly to increase thealation up to
the one desired for the FFT, and de-normalizingfdmtor
(fJL)"” whereL is now the FFT size. The phase is randomly
generated following a uniform distribution in trenge {x, 7).

If the current frame is unvoiced, the synthetiarfeais
equal to the generated noise. Otherwise, the m®isigh-pass
filtered in the frequency domain (before the ineefsFT)
according to a constant maximum voiced frequencyH5 is
an adequate value, as reported in [25]). The fhet &
constant-shape filter is used in voiced segmerstean of an
explicit modeling of the noise part is motivated thy good
performance of such an HNM implementation in many
applications [29]. Next, the harmonic componengéserated
as follows. The amplitudes of the harmonics arewated by
sampling the MFCC envelope and de-normalizing byofact
fy”. Their phases are obtained through a minimum-phase
approach [30]. Moreover, a linear-in-frequency ghasrm
calculated fronf, (for more details, see [16], for instance) is
added at each frame in order to keep the phaséiorela
between adjacent frames coherent. Apart from tkaine
artificial phase dispersion is included in the hanms above
3.5 kHz in order to reduce the buzziness that npgear on
the synthetic speech. It is worth mentioning ththeotypes of

Speech waveform reconstruction
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phase manipulations based on all-pass filters virgeee in
order to increase the naturalness of the synthdtjoals
[31][32], but none of them produced better restfizn the
described method according to listening tests.

The synthetic signal is reconstructed by overlagp-ad
(OLA) using triangular windows. Thus, it can be megsed as:

skT+t) =T 89 (t) + L3 (t-T) , 0st<T
s®(t)= z:: A® Cos(z,ﬁo(k)t + ¢i(k)) +e® (1)

where 7}, { ¢®}, and é9(t) are the amplitudes, phases and
noise at framek, respectively, and is the distance between
frames.

@)

3. Preliminary Evaluation

An open-source software toolkit named HMM-basedeshe
synthesis system, HTS, has been publicly releaseg 2002
by the so called HTS working group, led by Nitetchprovide

a research and development platform for the spesgathesis
community [33]. During training, given a parametric
representation of a number of speech signals asd&&abels
describing their phonetic and prosodic context, Hi&dels
the acoustic features of the different phonemesthmy with
their duration using context-dependent HMMs (CD-HNJMs
During synthesis, given the context labels of tigmal to be
generated, HTS creates a sentence-HMM by concatigrtae
corresponding CD-HMMs, and then generates the output
waveform by inverse parameterization of the vestxjuence
whose likelihood with respect to the sentence-HMM i
maximal.

The current HTS distribution includes demo scrifuts
training speaker-dependent and speaker-adaptivensysThe
parameterization and reconstruction functions ptediin the
HTS demo are the traditional one, which uses MFCGkaan
simple pulse/noise excitation, and the Straightdasne,
currently used in state-of-the-art systems. In otdeevaluate
the method proposed in section 2, we built a s\gitkee based
on HTS and measured the naturalness of the symtheti
utterances by means of a mean opinion score (M@S) t
Seven listeners were asked to listen to five difi€isynthetic
sentences for each of the three methods to be certhpa
(namely, “Traditional”, “Straight” and “Proposedgnd rate
them in a 1-to-5 MOS scale. The database used hisr t
evaluation consisted of 2K short sentences (ar@ihdurs of
speech) spoken by a Basque female speaker in nstital
The features used for training were the followifi@:+ 25
MFCCs for the traditional method, fO + 40 MFCCs + 5dan
aperiodicities for Straight, and fO + 40 MFCCs foreth
proposed method.

The MOS results shown in Figure 3 (at 95% configenc
intervals) reveal that the performance of the patanrzation
method presented in this paper is significantlydsahan that
of the traditional one. Straight still yields thedb results,
though the differences are much smaller in thiseca¥e
believe that one reason for this small gap is edlab the
explicit modeling of the aperiodic component. |mfad
experiments consisting of manipulating the Straigand-
aperiodicities to match the shape of the HNM higlsgpfilter
for noise (note that aperiodicity can be identifieith the
noise part of HNM) led to the conclusion that sdmportant
unvoiced information is lost under the current HNM
implementation. These small differences were notgieed in
resynthesized natural speech, probably becaudetdreframe
variability (not present in synthetic speech getsetafrom
statistical models) seems to compensate for thedaa more
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sophisticated noise model. Future works will ainstatdying
other variants of HNM that assume a full-band noise
component (such as [25]).

4, Conclusions

This paper has presented a method for extractinG@4and
fo from speech and reconstructing the waveform friws t
parametric representation. The proposed methodchwis
based on the HNM, yields highly satisfactory reswithen
compared to state-of-the-art techniques in a HMMeba
speech synthesis application. Particularly, thelimpmeary
results reported in this paper are not far fronséhof Straight-
based parameterization, even without an explicitlefing of
the aperiodic component. It is expected that furthe
improvements on that part of the system will leadeten
more promising results. A more formal evaluationthwa
higher number of listeners and synthetic voices vél carried
out in future works.
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Figure 1:Sinc-based interpolation (solid line) vs.
linear interpolation (dotted line) between amplitade

Amplitude (dB)

‘ ‘ ‘ ‘ ‘
3000 4000 5000 6000 7000
f (Hz)

-120 .
0 1000

I
2000

8000

Figure 2:Spectrum given by the proposed method
(solid line) and Straight spectrum (dotted line)aat
voiced frame.
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Figure 3:Results of the MOS test at 95% confidence
intervals.





