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Abstract 
The most widespread techniques for speech synthesis and 
voice conversion are currently based on probabilistic 
frameworks. Particularly, Hidden Markov Models (HMMs) 
play a relevant role in speech synthesis, whereas Gaussian 
Mixture Models (GMMs) are almost standard in voice 
conversion. Consequently, in both cases the performance of 
the systems is limited by three main factors: 1) the suitability 
of the statistical models; 2) the over-smoothing phenomenon; 
3) the accuracy of the underlying speech parameterization and 
reconstruction method. This paper focuses on the third issue, 
still open at present: translating speech frames into parameter 
vectors with good properties for the mentioned statistical 
frameworks, and reconstructing waveforms properly. The 
proposal presented in this paper uses the Harmonics plus 
Noise Model (HNM) to extract MFCC+f0 and reconstruct 
speech frames from them. The results of a perceptual 
evaluation show that the tool is valid for state-of-the-art 
HMM-based speech synthesis systems. 

 
Index Terms: speech parameterization, statistical parametric 
speech synthesis, voice conversion, harmonics plus noise 
model 

1. Introduction 
Speech parameterization and reconstruction is a hot topic at 
present, mainly because of the great development of speech 
synthesis systems based on HMMs [1][2] and voice 
conversion systems based on GMMs [3][4][5][6]. These 
statistical frameworks require the input signals to be translated 
into tractable sets of vectors with good properties. Thus, Mel-
frequency Cepstral Coefficients (MFCCs), which are known to 
work well in many areas of speech technologies, are also 
widely used for modeling spectra in synthesis and conversion 
systems [1][5]. Apart from their spectral modeling capability, 
one of their main advantages is that they allow using diagonal 
covariance matrices, since the individual components in each 
vector are highly uncorrelated. Other types of parameters such 
as Line Spectral Frequencies (LSFs) are often used in voice 
conversion [4][6]. Nevertheless, there is not a unique way of 
extracting parameter vectors from speech frames, and even 
less a unique reconstruction procedure. Vocoding is still an 
open topic for research, as both, parameter extraction from 
speech signals and speech reconstruction from parameters, 
have an immediate impact on the overall performance of the 
systems. This problem can be considered to be more important 
in speech synthesis than in voice conversion, where an 
original utterance of a source speaker is available (apart from 
the statistical models) and provides some information that can 
be used as a starting point. Therefore, this paper and the 
research work behind it have been focused especially on the 
former. 

In the particular case of HMM-based speech synthesizers, 
many ways of parameterizing speech signals have been put 
into practice during the last fifteen years. In the basic 
implementation of HTS (the publicly available HMM-based 
Speech Synthesis System [7] based on HTK [8] and originally 
conceived at Nitech), the spectrum was modeled through Mel-
frequency Cepstral Coefficients (MFCCs) obtained via Mel-
generalized cepstral analysis [9], whereas a very simple 
pulse/noise excitation based on f0 was used [10]. Subsequent 
improvements on that primary model consisted in using a 
more sophisticated mixed excitation [11][12]. Maia et al. [13] 
used an even more sophisticated trainable mixed excitation 
based on state-dependent filters for pulses and noise. In a 
recent work, Drugman et al. [14] used a two-band mixed 
excitation in which the upper band contained noise and the 
lower band was modeled through deterministic waveforms 
chosen via principal component analysis. In [15] and [16], a 
harmonics + noise decomposition of the signal itself (instead 
of the excitation) was used as a support for parameter 
extraction and waveform reconstruction. In both of them, the 
parameters used for training were based on linear prediction. 
Some other works focused on glottal source and vocal tract 
instead of spectrum and excitation [17][18][19]. Some 
attempts were also made to integrate the parameter extraction 
step into the statistical modeling step [20]. Probably, the most 
popular solution is the one based on Straight, a high-quality 
vocoder that decomposes signals into a spectral envelope (free 
of interferences from f0) and an excitation given by f0 and a so-
called aperiodic envelope [21]. Straight’s outputs are usually 
converted into adequate parameters such as MFCCs and band-
aperiodicities [22]. However, it is worth mentioning that 
Straight is a proprietary software. 

This paper presents a tool that extracts MFCC+f0 from 
speech frames, and vice versa, assuming a Harmonics plus 
Noise Model for speech waveforms [23]. The tool has been 
specifically designed to be integrated into HTS. The 
implemented method has the following interesting properties: 

- It allows extracting high-order MFCCs. 
- It does not require excitation parameters other than f0. 
- It achieves considerably high perceptual quality in 

resynthesis. 
- It allows several speech manipulations and modifications. 
- The waveform reconstruction procedures can be 

implemented to be very efficient, which is helpful at 
synthesis time. 

The perceptual tests performed to evaluate the tool in a speech 
synthesis application show that its performance is comparable 
to that of Straight, and thus can be used in state-of-the-art 
synthesizers. Moreover, we plan to make the tool freely 
available during the following months. The mentioned method 
is described in detail in Section 2, and the results of its 
preliminary evaluation are presented in section 3. Finally, 
Section 4 shows the conclusions of this paper. 
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2. Description of the method 
The method is based on the decomposition of speech frames 
into a harmonic part and a stochastic part, which was proposed 
by Laroche et al. [24]. The harmonic component captures the 
locally periodic part of the signal that results from the 
vibration of the vocal folds. It is modeled through a set of 
harmonically related sinusoids. The stochastic component 
contains all the signal events that cannot be captured by the 
harmonic one, such as aspiration noise, bursts, etc. It is 
usually modeled as white Gaussian noise passing through a 
shaping filter. 
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This mature speech model and its associated algorithms and 
methods [23] (a different implementation for operating under 
a constant frame rate, which is more appropriate for this task, 
can be found in [25]) provide a valid high-quality 
parameterization for speech analysis, modification and 
reconstruction. However, such a parameterization is hardly 
usable in a statistical framework for several reasons, being the 
most important ones the following [16]: 

- The number of harmonics inside the analysis band is 
variable and depends on f0. 

- The resulting number of parameters is high (f0 =100Hz 
means 50 harmonics between 0 and 5 kHz, each one given 
by its own amplitude and phase). 

- The variability of the amplitudes and phases with respect 
to f0 is extremely high. 

Therefore, the model is not suitable for direct speech 
parameterization in the mentioned statistical frameworks, 
although it can be used as a support for extracting other types 
of parameters, as done in previous works [15][16]. The next 
subsections describe the proposed analysis and reconstruction 
procedures. 

2.1. Parameter extraction 

During the analysis step, given an input signal, the analysis 
frame rate, and the order of the parameterization, the system 
calculates one f0 value and one MFCC vector for each frame. 

The first step of the analysis procedure is pitch detection. 
In this case, a modified version of the autocorrelation-based 
algorithm presented in [26] is used for extracting the local f0 
and determining whether the current frame is voiced or 
unvoiced. The modifications introduced into the original 
algorithm aim at increasing the estimation accuracy through a-
posteriori local refinements using shorter analysis windows 
and considering the slopes of the complex amplitudes of the 
harmonics at low frequencies, as proposed in [24]. 

Voiced and unvoiced frames are treated in a different way 
to extract their MFCC representation. If the input frame has 
been classified as voiced by the pitch detector, a typical 
harmonic analysis (based on least squares optimization [23]) 
is performed on the full analysis band to get the log-
amplitudes of the harmonics at multiple frequencies of f0. Note 
that the amplitudes can be interpreted as discrete samples of 
the actual spectral envelope. Even at high frequencies (close to 
the Nyquist frequency), which carry noise-like signal 
components according to conventional HNM, the harmonic 
analysis is assumed to provide valid samples of the spectral 
envelope. Unvoiced frames are analyzed through a simple fast 
Fourier transform (FFT). Optionally, the resulting spectrum 
can be smoothed within certain bands. In order to homogenize 
both types of output, the envelope given by the harmonic 
amplitudes obtained for voiced frames is resampled at the FFT 

resolution via interpolation. Although past research shows that 
linear interpolation between log-amplitudes is accurate 
enough for some applications such as pitch modification 
[27][25], sinc-based interpolation is used here to increase the 
consistence of the analysis (see Figure 1 for details). As there 
is no reliable spectral information at frequencies below f0, an 
extra artificial harmonic with the same amplitude as the 
fundamental one is added at 0 Hz before interpolating. A 
similar strategy was followed in [27] and gave good 
perceptual results. The resulting spectral envelopes should be 
very similar to those calculated by Straight [21] (see Figure 2), 
and therefore have the same potential advantages, mainly the 
fact that they allow estimating high-order MFCCs. 

Next, the amplitude spectra are amplitude-normalized 
according to a multiplicative factor f0

-½ (in unvoiced frames, f0 
is given the value fs/L, where fs is the sampling frequency and 
L is the analysis window length). This normalization is 
necessary to eliminate the dependency of the amplitude from 
f0, which allows resynthesizing the signal at f0 values other 
than the measured one. Note that two signals having the same 
energy and spectral envelope show harmonic amplitudes 
proportional to their pitch. The explanation is simple: for a 
given bandwidth, at higher f0 the energy of the signal has to be 
supplied by fewer harmonics, so their amplitude has to be also 
higher. 

During the last step of the analysis, cepstral coefficients 
are extracted from each amplitude spectrum as follows. First, 
the traditional cepstrum is obtained as the inverse Fourier 
transform of the log-amplitude spectrum, and then its 
dimension is reduced and the warping factor of the cepstral 
parameterization is transformed to match the Mel scale using 
the recursion described in [9]. Although other ways of 
calculating MFCCs from discrete points of the spectrum were 
also explored [28], informal tests consisting of visualizing the 
ripple of the MFCC curves at low frequencies led to the 
choice of the mentioned solution. 

2.2. Speech waveform reconstruction 

The first step consists of generating the noise part of the 
signal, which is present in both, voiced and unvoiced frames. 
The noise is obtained through inverse FFT after rebuilding the 
FFT spectrum from the MFCCs. The FFT module is obtained 
by sampling the MFCC envelope at a reasonable resolution 
(100 Hz), interpolating linearly to increase the resolution up to 
the one desired for the FFT, and de-normalizing by factor 
(fs/L)½, where L is now the FFT size. The phase is randomly 
generated following a uniform distribution in the range [-π, π). 

If the current frame is unvoiced, the synthetic frame is 
equal to the generated noise. Otherwise, the noise is high-pass 
filtered in the frequency domain (before the inverse FFT) 
according to a constant maximum voiced frequency (5 kHz is 
an adequate value, as reported in [25]). The fact that a 
constant-shape filter is used in voiced segments instead of an 
explicit modeling of the noise part is motivated by the good 
performance of such an HNM implementation in many 
applications [29]. Next, the harmonic component is generated 
as follows. The amplitudes of the harmonics are calculated by 
sampling the MFCC envelope and de-normalizing by factor 
f0

½. Their phases are obtained through a minimum-phase 
approach [30]. Moreover, a linear-in-frequency phase term 
calculated from f0 (for more details, see [16], for instance) is 
added at each frame in order to keep the phase relation 
between adjacent frames coherent. Apart from that, some 
artificial phase dispersion is included in the harmonics above 
3.5 kHz in order to reduce the buzziness that may appear on 
the synthetic speech. It is worth mentioning that other types of 
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phase manipulations based on all-pass filters were tried in 
order to increase the naturalness of the synthetic signals 
[31][32], but none of them produced better results than the 
described method according to listening tests. 

The synthetic signal is reconstructed by overlap-add 
(OLA) using triangular windows. Thus, it can be expressed as: 
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where {Ai
(k)}, { φi

(k)}, and e(k)(t) are the amplitudes, phases and 
noise at frame k, respectively, and T is the distance between 
frames. 

3. Preliminary Evaluation 
An open-source software toolkit named HMM-based speech 
synthesis system, HTS, has been publicly released since 2002 
by the so called HTS working group, led by Nitech, to provide 
a research and development platform for the speech synthesis 
community [33]. During training, given a parametric 
representation of a number of speech signals and sets of labels 
describing their phonetic and prosodic context, HTS models 
the acoustic features of the different phonemes together with 
their duration using context-dependent HMMs (CD-HMMs). 
During synthesis, given the context labels of the signal to be 
generated, HTS creates a sentence-HMM by concatenating the 
corresponding CD-HMMs, and then generates the output 
waveform by inverse parameterization of the vector sequence 
whose likelihood with respect to the sentence-HMM is 
maximal. 

The current HTS distribution includes demo scripts for 
training speaker-dependent and speaker-adaptive systems. The 
parameterization and reconstruction functions provided in the 
HTS demo are the traditional one, which uses MFCCs and a 
simple pulse/noise excitation, and the Straight-based one, 
currently used in state-of-the-art systems. In order to evaluate 
the method proposed in section 2, we built a synthesizer based 
on HTS and measured the naturalness of the synthetic 
utterances by means of a mean opinion score (MOS) test. 
Seven listeners were asked to listen to five different synthetic 
sentences for each of the three methods to be compared 
(namely, “Traditional”, “Straight” and “Proposed”) and rate 
them in a 1-to-5 MOS scale. The database used for this 
evaluation consisted of 2K short sentences (around 2 hours of 
speech) spoken by a Basque female speaker in neutral style. 
The features used for training were the following: f0 + 25 
MFCCs for the traditional method, f0 + 40 MFCCs + 5 band-
aperiodicities for Straight, and f0 + 40 MFCCs for the 
proposed method. 

The MOS results shown in Figure 3 (at 95% confidence 
intervals) reveal that the performance of the parameterization 
method presented in this paper is significantly better than that 
of the traditional one. Straight still yields the best results, 
though the differences are much smaller in this case. We 
believe that one reason for this small gap is related to the 
explicit modeling of the aperiodic component. Informal 
experiments consisting of manipulating the Straight band-
aperiodicities to match the shape of the HNM high-pass filter 
for noise (note that aperiodicity can be identified with the 
noise part of HNM) led to the conclusion that some important 
unvoiced information is lost under the current HNM 
implementation. These small differences were not perceived in 
resynthesized natural speech, probably because the inter-frame 
variability (not present in synthetic speech generated from 
statistical models) seems to compensate for the lack of a more 

sophisticated noise model. Future works will aim at studying 
other variants of HNM that assume a full-band noise 
component (such as [25]). 

4. Conclusions 
This paper has presented a method for extracting MFCCs and 
f0 from speech and reconstructing the waveform from this 
parametric representation. The proposed method, which is 
based on the HNM, yields highly satisfactory results when 
compared to state-of-the-art techniques in a HMM-based 
speech synthesis application. Particularly, the preliminary 
results reported in this paper are not far from those of Straight-
based parameterization, even without an explicit modeling of 
the aperiodic component. It is expected that further 
improvements on that part of the system will lead to even 
more promising results. A more formal evaluation with a 
higher number of listeners and synthetic voices will be carried 
out in future works. 
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Figure 1: Sinc-based interpolation (solid line) vs. 
linear interpolation (dotted line) between amplitudes. 
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Figure 2: Spectrum given by the proposed method 
(solid line) and Straight spectrum (dotted line) at a 

voiced frame. 
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Figure 3: Results of the MOS test at 95% confidence 
intervals. 
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