
Predictive vector quantization using the M-algorithm for distributed speech
recognition

Jose Enrique Garcia, Alfonso Ortega, Antonio Miguel, Eduardo Lleida

Communications Technology Group (GTC)
Aragon Institute for Engineering Research (I3A), University of Zaragoza, Spain

jegarlai,ortega,amiguel,lleida@unizar.es

Abstract

In this paper we present a predictive vector quantizer for dis-
tributed speech recognition that makes use of a delayed deci-
sion coding scheme, performing the optimal codeword search-
ing by means of the M-algorithm. In single-path predictive vec-
tor quantization coders, each frame is coded with the closest
codeword to the prediction error. However, prediction errors
and quantization errors of future frames will be influenced by
previous quantizations, in such a way that choosing an instanta-
neous coding with the best codeword for each frame do not offer
the optimal codeword sequence. The M-algorithm presents the
advantage of obtaining a global minimization of the quantiza-
tion error by maintaining the M-best quantization hypotheses
for each frame, in a multipath coding approach outperforming
the single-path predictive vector quantizer. In this work,the
chosen cost function is the Euclidean distance between the se-
quence of prediction errors and the sequence of quantized val-
ues. The method has been tested for coding MFCC coefficients
in Distributed Speech Recognition systems, making use of a
non-linear predictive vector quantization on a large vocabulary
task. Experimental results show that using this global optimiza-
tion, lower bit rates can be achieved than using the single-path
coding non-linear predictive vector quantizer without degrada-
tion in terms of WER.
Index Terms: distributed speech recognition, predictive vector
quantizer, delayed decision coding, M-algorithm

1. Introduction
Distributed Speech Recognition (DSR) is the paradigm in which
high performance automatic speech recognition applications
(ASR) can be developed, releasing more expensive computing
resources in the client side. A DSR system is composed of two
main modules, the client or user module, where speech acquisi-
tion, feature extraction and feature compression are performed,
and the server or recognition module, where both feature de-
compression and ASR decoding are carried out. DSR is usu-
ally the solution adopted when the client computing capability
is limited, as it occurs in mobile devices, or just for releasing
memory and processing resources in the client side, as it occurs
in speech-enabled web browsing applications [1]. The main
feature of DSR is that low bit-rate compression algorithms can
be used without degrading the recognition accuracy. Another
option for performing ASR in a client-server architecture con-
sists of sending coded speech instead of coded acoustic features,
which is known in the literature as Network Speech Recogni-
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tion (NSR). However, several studies have shown that the per-
formance is drastically reduced using state of the art speech
codecs at low bit-rate conditions [1] [2]. The main reason is
that most speech coding algorithms are designed for maximiz-
ing speech perceptual quality, not for maximizing speech recog-
nition performance. Because the available network bandwidth
is a scarce resource, it is convenient to use compression algo-
rithms that provide transmission rates as low as possible, pro-
vided that recognition rates are not reduced.

Differential Vector Quantization (DVQ) is a compression
method that exploits both inter-frame and intra-frame mutual
information, existing in feature vectors (e.g. MFCC). On the
one hand, temporal correlation between adjacent frames, due to
both, the overlapping of the windowing step and the relatively
slow variation of speech production, is exploited by means of
linear prediction. On the other hand, intra-frame redundancy is
exploited by means of Vector Quantization. A previous work
[3] concluded that using DVQ in a connected digit task, a bit-
rate as low as 2.1 kbps could be reached obtaining the same
recognition performance than without quantization, whiletra-
ditional VQ methods obtained a poor recognition performance
at bit-rates lower than 3.5 kbps, even worse when noisy chan-
nels were evaluated.

The differential vector quantizer was improved by means
of a non-linear predictive Vector Quantization scheme based
on a Multi-Layer Perceptron (PVQ-MLP) [4]. It makes use of
Artificial Neural Networks for predicting each coefficient in-
dividually using additional energy information, while predic-
tion errors are quantized jointly by using Vector Quantization.
With this non-linear predictive schema, both prediction gain and
recognition accuracy improvements were reported, compared to
the DVQ that makes use of an order one linear predictor.

In this work, another step for improving the compression
method is presented. The proposed optimization algorithm
solves the limitation of conventional single-path predictive vec-
tor quantizers, where the closest codeword for representing a
single frame is chosen and sent out to the decoding side, without
taking into account that future predictions can offer less quanti-
zation errors if a different codeword would be chosen. In order
to tackle with this limitation, a global optimization can bedone
in a delayed decision coding approach, using the M-algorithm
[5]. It preserves the M-best quantization hypotheses in each
frame, where a minimum cost criterion is followed for choos-
ing them. For the experiments presented in this paper, the Eu-
clidean distance between the sequence of prediction errorsand
the sequence of codewords has been chosen as the cost func-
tion, however other functions for maximizing the recognition
accuracy could be chosen.

The M-algorithm optimization, evaluated in the non-linear
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predictive vector quantizer schema, has been compared to PVQ-
MLP, DVQ, VQ and the codebooks of the ETSI standard. All of
them evaluated using the Advanced ETSI Front End (AFE) and
Aurora 4 corpus which is a 5kword task with different acoustic
environmental conditions including severe noise scenarios.

The remainder of this paper is organized as follows. First,
the basics of DSR are briefly introduced in Section 2. In Section
3 an introduction to conventional predictive vector quantizers
are presented, in section 4 the optimization algorithm applied
to predictive vector quantizers is presented, while the experi-
mental setup and performance evaluation are given in Section
5. Finally, the conclusions are provided in Section 6.

2. Distributed Speech Recognition
A feature compression algorithm is usually the last stage of
the Front-End in DSR, in order to reduce the transmission bit-
rate as much as possible. One of the most extended compres-
sion methods for DSR is Vector Quantization (VQ), which uses
intra-frame redundancy of feature vectors for reducing thebit-
rate providing good recognition performance [1]. The European
Telecommunication Standards Institute (ETSI) has incorporated
VQ as compression technique for all of its Front-End standards:
ETSI 201 108, 202 050 and 202 212.

The ETSI standards Front-Ends offer 13 cepstral coeffi-
cients, and the log-energy coefficient, with noise reduction al-
gorithms for the Advanced version and along with fundamen-
tal frequency and voicing class information in the Extended
Advanced version. The compression stage is based on Vector
Quantization of feature vectors pairs, resulting in 7 quantized
pairs, in whichC0 is jointly quantized with log-energy, and the
rest, quantized in adjacent pairs. The bit-rate obtained using
this VQ is 4.4 kbps without channel error protection and with-
out pitch and voicing class information.

However, using only VQ in the compression stage presents
the main drawback that fail to exploit the strong inter-frame
redundancy existing in MFCC vectors. Exploiting such inter-
frame redundancy, along with intra-frame redundancy, would
potentially lead to an increase in the compression rate. This can
be done with a predictive vector quantization scheme, as the
systems proposed in [3] [4], and the system presented in thispa-
per. The idea of such schemes is the design of a more efficient
source coding algorithm that removes all the non structuredre-
dundancy existing in the MFCCs, assuming that this new rep-
resentation will be more sensitive to channel errors. However,
the effect of channel errors can be neutralized by adding struc-
tured redundancy, in a lesser amount, by using channel coding
techniques. In fact, the most important mobile networks (p.e.
WiMaX or WiFi) provide error protection modules, and addi-
tionally for IP networks, the TCP protocol can be employed. Of
course, these and other interesting known issues regardingthe
transmission of compressed acoustic features in ASR worth to
be studied but they are beyond the scope of this work.

3. Predictive Vector Quantization of MFCC
Several compression schemes that make use of signal prediction
jointly with Vector Quantization of the residual prediction error,
have been successfully used in video and audio compression
and, more recently, in DSR [3] [4]. Other predictive approaches
for compressing acoustic features for DSR have been studied
using order one linear prediction with scalar quantizationin [2]
and with a two-stage Vector Quantization in [6].

Predictive Vector Quantization with Multi-Layer Percep-
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xi

x̂i

x̃i
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d̃i

C = {c1, c2, ..., cM}

x̂i = f(x̃i−1, ..., x̃i−N)

Figure 1: Block Diagram of a predictive vector quantization
schema.

tron (PVQ-MLP) [4] performs prediction of each coefficient
making use of a non-linear function that has an input layer with
the latest quantized coefficients, and the latest energy quantized
coefficients, outperforming DVQ [3], that employs an order one
linear predictor, both in quantization error and recognition ac-
curacy.

The scheme for compressing a group of coefficients with
a differential vector quantizer is shown in figure 1. For theith

frame, each group of cepstral coefficients is denoted asxi. Over
this tuple, a prediction is done by using the previous quantized
values,

x̂i = f(x̃i−1, ..., x̃i−N), (1)

whereN is the predictor order.
In a conventional differential vector quantizer, the predic-

tion error,d
i
= xi − x̂i, is quantized by means of a codebook

composed ofL codewords,C = {c1, c2, ..., cL}. The quanti-
zation procedure consists of choosing, for each frame, the clos-
est codewordc

j
, using the Euclidean distance:

d̃i = arg min
cj

{|c
j
− di|

2
} = di + ei (2)

wherec
j

is thejth codeword, that will be sent out to the decoder
side, andei is the quantization error. The quantized prediction
error d̃i is used to obtain the reconstructed coefficientsx̃i =

x̂i + d̃i, that are also obtained in the decoder, and employed for
predicting the forthcoming frames using (1).

Note that the reconstructed coefficients can be also ex-
pressed as

x̃i = xi + ei, (3)

where it can be observed that the quantization error of the coef-
ficients is the same than the quantization error of the prediction
error.

4. M-algorithm optimization for Predictive
Vector Quantization

LetX = {x1, ..., xt, ..., xT} be the originalT frame sequence
of coefficients to be quantized,̃X = {x̃1, ..., x̃t, ..., x̃T} the re-
constructed coefficient sequence,D̃ = {d1, ..., dt, ..., dT} the
prediction error sequence, andU = {u1, ..., ut, ..., uT} the
sequence of chosen codewords sent out to the decoder side,
whereut ∈ C.

The minimum squared quantization error for the whole se-
quence can be computed as:
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ξ = min
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X

t=1

|d
t
−u

t
|
2 (4)

However, note that for the instantaneous decision method (2)
used in single-path predictive vector quantizers, there isno
guarantee thatξ could be obtained due to the fact that,

min
{u1,...,uT}

T
X

t=1

|d
t
− u

t
|
2
≤

T
X

t=1

min
ut

|d
t
− u

t
|
2
, (5)

where the second term in (5) is the squared error obtained by
a typical predictive vector quantizer that performs decisions in
a frame by frame basis, as in (2). The inequality (5) is valid
for predictive vector quantizers, since the termd

t
(containing

the prediction error for framet) depends on previous codeword
decisions, and previous values of the signal,

d
t
= h(ut−1, ..., u1, xt, xt−1, ..., x1). (6)

Note that in (5), the equality holds ifd
t

is memoryless.
The problem that we want to solve is to choose the code-

word sequenceU that minimizes the Euclidean distance be-
tween the sequence of original coefficientsX an the sequence
of reconstructed coefficients̃X. The exact solution to this cod-
ing problem could be obtained by using a brute force approach,
computing the Euclidean distance for all possible codewordse-
quencesU. However, that is computationally intractable even
for small values ofT andL.

In this paper we make use of the M-algorithm [5] in or-
der to get an approximate solution to this problem that per-
forms better than the single frame decision. The method con-
sists of a synchronous evaluation algorithm, where in a frame
by frame basis the M-best hypotheses (with minimum accu-
mulated cost) are mantained. Before framet is evaluated, a
hypothesis is composed of an accumulated costat−1, an index
historyit−1 = {i1, ..., it−1}, and a history of reconstructed co-
efficients̃rt−1 = {x̃1, ..., x̃t−1}, For each one of theM active
hypothesis at framet, an instantaneous prediction error is ex-
tracted:

dt = xt − f(x̃t−1, ..., x̃t−N) (7)

With this prediction error, the instantaneous Euclidean dis-
tanceot,j is obtained for each codeword indexj = 1..L,

ot,j = |c
j
− dt|

2 (8)

Finally, the accumulated cost for that hypotheses propa-
gated through the codeword indexj is,

at,j = at−1 + ot,j (9)

If the evaluated hypothesis is selected as valid, the accumu-
lated cost, the index history and the reconstructed coefficients
are updated. The total number of prediction hypotheses thatare
evaluated at framet becomeML. However, only the M-best
hypothesis (with less accumulated costat,j) are conserved for
processing the next frame. When the last frameT is reached,
the index historyiT with the lowest accumulated costaT is sent
out to the receiver side, that performs the reconstruction of the
coefficients like in a conventional predictive vector quantizer.

In a typical single-path predictive vector quantizer the code-
book index of a quantized frame is chosen in a frame by frame

Table 1: Different bit-allocations for different bit-rates explored
from 1.4 to 2.0 kbps

Bit-rate C1C2 C3C4 C5C6 C7C8C9 C10C11C12 C0 E
1.4 3 3 2 2 2 2
1.6 3 3 3 3 2 2
1.8 3 3 3 3 3 3
2.0 4 4 3 3 3 3

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
0.8

0.85

0.9

0.95

1

1.05

1.1
PVQ−MLP
OPVQ−MLP

Average MSE in the quantization of MFCCs

Bit-rate (kbps)

M
S

E
Figure 2: Average MSE in the quantization of MFCCs, in the
test01 of Aurora 4

basis independently of future quantizations (2), and only one
prediction hypothesis is conserved in each frame. The optimiza-
tion algorithm forM = 1 is equivalent to the typical single-
path predictive vector quantizer, however, with higher values of
M lower quantization errors are obtained.

5. Performance Evaluation
In order to evaluate the performance of the proposed optimized
predictive vector quantization method, OPVQ-MLP an exten-
sive set of recognition experiments was carried out on a large
vocabulary task, under different channel and noise conditions.
The presented quantization scheme has been compared to the
rest of quantization techniques exposed in [3][4] (PVQ-MLP,
DVQ, variable length VQ, and the fixed length ETSI VQ).

The number of hypotheses per frame in the optimization
algorithm OPVQ-MLP,M, was fixed to 10, in a trade-off be-
tween computational complexity and quantization error perfor-
mance, since it was observed that higher values ofM did not re-
duce significantly the quantization error. The optimization algo-
rithm was applied to each sub-vector group individually, insuch
a way that there was 10 hypothesis by frame and group. In the
OPVQ-MLP and PVQ-MLP methods, MFCC sub-vectors were
grouped as shown in Table 1, for testing bit-rates between 1.4
and 2.0 Kbps. For testing bit-rates between 700 and 4200 bps
in the methods PVQ-MLP, DVQ and VQ, MFCC sub-vectors
were grouped by pairs, as defined in the ETSI standard encoder,
and the bit-rate was obtained assigning the same number of bits
for each one of the 7 pairs, in such a way that using 1,2,3,4,5,6
bits by pair, a bit-rate of 700, 1400, 2100, 2800, 3500, 4200 bps
is obtained, since a 100 frames per second rate is considered,

For all the experiments, the codebooks of OPVQ-MLP,
PVQ-MLP, DVQ, and VQ were trained using different numbers
of codewords under different train/test conditions. For training
all the quantizers, we used the same training set that the one
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Figure 3: Mean results for all train-test combinations

used for training the acoustic models, so acoustic models were
always adapted to the compression algorithms under all condi-
tions.

The experiments for the ASR performance evaluation were
carried out with the 8 kHz part of Aurora 4 database [7], de-
signed by the Aurora Working Group of the ETSI. This database
was conceived for developing robust Front-Ends and speech
processing modules to be used in DSR systems. It is com-
posed of a 5kword vocabulary based on DARPA Wall Street
Journal (WSJ0) and contains 3 training sets (with 7138 utter-
ances each one) and 14 test sets (with 330 utterances each one).
Several acoustic environments are defined for composing 3 dif-
ferent train sets.

The recognizer and training tool employed for all the exper-
iments was HTK, using a similar setup to that used in HIWIRE
project for evaluating Aurora 4 database [8], that is, ETSI Ad-
vanced Front-End (AFE), cross-word tree-based tied-statetri-
phones for acoustic models, with 3 states in each unit, and a
GMM of 6 components for modeling the observation probabil-
ity in each state. The language model employed was a back-off
bigram.

Fig. 2 shows the quantization error for both methods with
bit-rates ranging from 1.4 kbps to 2.0 kbps. It can be seen that
OPVQ-MLP curve is always under PVQ-MLP curve, for all the
evaluated bit-rates showing that a better quantization hasbeen
obtained thanks to the proposed optimization algorithm. These
curves were obtained with test number one of Aurora 4, and the
codebooks trained with clean signal. However, for all train-test
combinations explored, the quantization performance is better
for the OPVQ-MLP method than for the PVQ-MLP method.

Fig. 3 shows the mean Word Error Rate for all the exper-
imental conditions described before (each one of 42 combina-
tions train set - test set). As it can be seen, the DVQ perfor-
mance is superior to the one obtained with conventional VQ
methods for all code-book lengths, and OPVQ-MLP schema
outperforms PVQ-MLP, DVQ and VQ methods. The degrada-
tion of DVQ method compared to a system without quantization
is small for bit-rates above 2.1 kbps. However, the PVQ-MLP
method can reach a bit-rate as low as 1.8 kbps with similar WER
to ETSI quantizer, at 4.4 kbps, and slightly better than WER
achieved by DVQ at 2.1 kbps, and the proposed OPVQ-MLP
method can reach similar bit-rates than PVQ-MLP, but with less
WER.

In comparative terms, it is worth pointing out that OPVQ-

MLP at 1.6 kbps, PVQ-MLP at 1.8 kbps and DVQ at 2.1 kbps
perform as well as VQ at 3.5 kbps and the AFE compression
method at 4.4 kbps, with a small WER degradation over the
baseline. Respect to the recognition results in different con-
ditions It was observed that the behavior of the compression
methods for different matching conditions is very homogeneous
in comparative terms.

6. Conclusion
In this paper, a delayed decision coding algorithm for predic-
tive vector quantization, the M-algorithm, has been evaluated in
recognition experiments on a large vocabulary task, using Au-
rora 4 database. This algorithm extracts an optimal codeword
sequence in the quantization process, in an efficient way, with-
out evaluating all possible codeword combinations by maintain-
ing the M-best hypotheses for each frame. Experimental results
with M=10 showed that the proposed OPVQ-MLP quantizer
outperforms the method PVQ-MLP, that decides the current
codeword that must be sent to the back end in a single frame de-
cision approach. The bit-rate that can be reached using OPVQ-
MLP is 1.6 Kbps with a 5.1% of relative WER degradation with
respect to an ASR system without quantization. Similar results
in terms of WER can be obtained with the ETSI standards com-
pression method, which makes use of 4.4 kbps, implying 175%
of bandwidth increase relative to the proposed 1.6 kbps OPVQ-
MLP method.

This study shows that the M-algorithm, in a delayed deci-
sion coding approach for predictive vector quantizers, canbe
used in order to get a minimum cost global optimization. In ad-
dition, a reduction in the necessary bit-rate without WER degra-
dation has been reported on a large vocabulary task under dif-
ferent noise conditions, which highlights the benefits of using
this method as compression stage in Distributed Speech Recog-
nition.
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