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Abstract
There are many factors that lead to decrease the final perfor-
mance on spoken term detection (STD) systems. They are
mainly related to the properties of the terms to be searched,
the speech signal conditions and so on. This paper proposes
and analyses a set of factors that can enhance or disminish the
hit/false alarm (FA) ratio based on certain features. Our study
reflects that detections corresponding to short-length terms, de-
tections corresponding to a term similar to some other, short
duration detections and lower confidence values assigned to
each putative detection can lead to a FA whereas the opposite
is shown to correspond to a hit in an open-vocabulary STD sys-
tem.
Index Terms: spoken term detection, feature analysis, speech
recognition.

1. Introduction
Speech information retrieval has received much interest for
years, focusing on finding relevant information from audio
archives. It encouraged many groups to develop practical sys-
tems [1–5] and NIST to conduct the first Spoken Term Detec-
tion (STD) evaluation [6], which aims at finding a list of terms
fast and accurately in huge audio repositories. The standard
STD architecture consists of a Speech Recogniser to produce
word/sub-word lattices, a Term Detector to hypothesise puta-
tive detections and a Confidence Measure component to decide
if each putative detection is reliable, as it is depicted in Figure
1.

Figure 1:The standard STD architecture.

The Confidence Measurecomponent plays a very impor-
tant role in STD systems. It examines each putative detection
and decides if it is considered to be a hit or a false alarm (FA). A
hit occurs when a hypothesised detection appears in the speech

signal. A FA occurs when the detection does not appear in
the speech signal. An occurrence which is not hypothesised
by the system is called amiss. Most of the works related to
STD have proposed different confidence measures from which
the final STD performance, in terms of ATWV (Actual Term
Weighted Value, defined by NIST [6] for the STD task) and
DET curves [7], is enhanced. Some are based on the scores
produced by the speech recogniser [8,9]. Other such as n-best
lists [10,11], minimum edit distance [12,13] and discriminative
confidence [14–16] have been also explored. However, these
works hardly make any analysis about which term properties or
feature values derived from the speech signal are more likely
to produce more hits or FAs. Actually, this hit/FA tradeoff
measures the system performance. Therefore, this work aims
at proposing a putative set of features, mainly term-based fea-
tures, detection-based features and speech signal-based features
and analyses their influence in the final hit/FA ratio. It must
be noted that there are related works [17,18] which analyse
the Word Error Rate (WER) contribution of individual words
in an Automatic Speech Recognition (ASR) Large Vocabulary
Continuous Speech Recognition (LVCSR) system. Our work is
slightly different since we analyse the performance, in terms of
hits and FAs in an open-vocabulary STD task. In addition, new
features are also proposed and explored for this STD task.

The rest of the paper is organised as follows: Section 2 de-
scribes the sets of features explored in this work. Section 3
presents the experimental setup. An histogram-based analysis
and linear regression-based analysis are presented in Section 4
and Section 5 respectively. Finally, the work is concluded in
Section 6.

2. Feature class description
Inspired by the previous works [17,18], the following sets of
features have been studied:

• Lattice features: This set of features comprises: the
lattice-based confidence (score) for each detection (i.e.,
cf (dK

i
), computed as in [19] from standard forward-

backward recursions), R0 (i.e., the effective occurrence
rate for each term defined by Equation 1) and R1 (i.e.,
the effective false alarm rate for each term defined by
Equation 2).

R0(K) =

P

i
cf (dK

i
)

T
(1)

R1(K) =

P

i
(1 − cf (dK

i
))

T
(2)
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wherecf (dK

i
) represents the lattice-based confidence of

thei-detection of the termK andT is the total length of
the audio.

• Lexical features: This set of features contains the total
number of graphemes, phones, vowel graphemes, con-
sonant graphemes, vowel phones and consonant phones
for each term.

• Levenshtein distance features: The maximum, minimum
and mean Levenshtein distance for each term against the
others.

• Duration features: This set of features contains the dura-
tion of each detection, the duration divided by the num-
ber of phones (phone speech rate) and divided by the
number of vowels (vowel speech rate) of each detection.

• Position: It represents if the detection appears the first in
the lattice, the last in the lattice or in any other position.

• Prosodic features: They contain the pitch (maximum,
minimum and mean pitch for each detection), the inten-
sity (maximum, minimum and mean intensity for each
detection) and the voicing percentage (i.e., the percent-
age of voiced speech for each detection in the speech
signal). These features were collected using Praat [20].

The new features introduced in this work compared with
the previous works [17,18] are the lattice-based features, all the
lexical-based features except the number of phones, the Leven-
shtein distance features, the vowel speech rate within the du-
ration features and the voicing percentage within the prosodic
features.

3. Experimental setup
The geographical domain of the Albayzin database [21] was
used for the experiments. 500 OOV terms, selected from the
geographic corpus, which amount 12651 occurrences in the ge-
ographic training set, were used as list of terms. They were
chosen based on their number of occurrences in this set.

A phone-based system was built from the HTK tool [22]
in N -best mode to produce the phone lattices. It used state-
clustered triphone models and 39-dimensional MFCC features.
A bigram was used as LM trained from the phonetic training
set of the Albayzin database. A grapheme-to-phone conver-
sor was used to predict pronunciations for theOOV terms. As
term detector, we used theLattice2Multigramtool developed
by Brno University of Technology (BUT), which hipothesises
dectections based on an exact match of the phone transcription
of each term and the paths in the phone lattice.

The STD system was run on the 500 OOV terms and the
geographic training set and detections were labeled as hit or FA
to carry out the analysis of which features are more likely to
produce hits and FAs.

4. Histogram-based analysis
Each individual set of features explained in Section 2 is anal-
ysed from a histogram by plotting each feature contained in
each group as it is presented in Figures 2-6. Inspecting the Fig-
ure 2, we see that, as expected, hits posses a higher score than
FAs since it actually corresponds to the confidence assigned to
each detection. Therefore, detections with higher scores are
more likely to be hits and detections with lower scores should be
considered as FAs. Consistent results are observed from the R0
and R1 features since terms with higher R0 and lower R1 are

more likely to produce hits than FAs due to the former repre-
sents the effective occurrence rate and the latter represents the
effective false alarm rate. Inspecting the Figure 3, where the
lexical features per term are plotted, it can be seen that short-
length terms (both in terms of phones are graphemes) are more
likely to produce more FAs than long-length terms since the
former can be a part of a long term or even a concatenation
of the end and beginning of two different terms. This analy-
sis is also consistent with the number of vowels and number of
consonants (both for phones and graphemes). From the Fig-
ure 4, we observe that terms with a lower mean Levenshtein
distance are more likely to be confused with some other and
therefore they will produce more FAs than terms with higher
mean Levenshtein distance, whose confusability with the rest
is lower. However, extreme values (i.e., those derived from the
maximum and minimum Levenshtein distances), does not sep-
arate hits from FAs in such a way that any clear conclusion is
reached. Inspecting the duration-based features in Figure 5, we
can see that a detection with a shorter duration is more likely
to be a FA than a detection with longer duration, both in terms
of absolute duration, phone speech rate and vowel speech rate.
This may be due to many times FAs are produced by speech
recognition errors that tend to cause awkward durations. The
position of each detection found in the lattice does not discrim-
inate between hits and FAs at all and therefore, the two plots
are mostly overlapped in Figure 5. Finally, inspecting the Fig-
ure 6, we can see that detections corresponding to speech signal
intervals with low intensity are more likely to be hits than FAs
since higher values of minimum intensity may be caused by
poor speech signal conditions and that the rest of the prosodic
features do not discriminate between the hit and FA classes at
all.
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Figure 2: Histogram analysis for the lattice-based features.
Green bars represent hits and red bars represent false alarms.

5. Linear regression-based analysis of
variance

As an alternative analysis to the one presented in the former
section, in this section we perform an analysis based on linear
regression in which we analyse the amount of variance in the
binary variable hit/FA, represented as a 1 or a 0, that can be ex-
plained by a linear regression using each of the individual fea-
tures defined in Section 2. This analysis is performed using the
stepwise function of MATLAB and computing the R2 statistic.
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Figure 3: Histogram analysis for the lexical features.ph. de-
notes phones andgr. denotes graphemes. The layout is the same
as in Figure 2.
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Figure 4:Histogram analysis for the Levenshtein (lev) distance-
based features. The layout is the same as in Figure 2.
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Figure 5: Histogram analysis for the duration- and position-
based features. The layout is the same as in Figure 2.
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Figure 6: Histogram analysis for the prosodic features. The
layout is the same as in Figure 2.

A similar approach was successfully used in [23] to choose the
set of features that provides more information to discriminate
between hits and FAs. There we showed that the conclusions
obtained from the multiple linear regression analysis were in
accordance with results obtained with a more complex (neural
network) confidence estimator. Here our interest is different,
because we are not interested in training a confidence estima-
tor, but in determining the most interesting features in isolation.
For this reason we do not group the features as we did there and
only the percentage of reduction of variance achieved by using
a single feature is analysed. Results of these analyses on the
same set used in Section 4 are presented in Table 1.

This analysis yields basically the same conclusions ob-
tained in the previous section, but with a numerical result that
can be used to compare the amount of information provided
by each individual feature in a more principled manner than by
looking at the amount of overlapping of the histograms. There-
fore, those feature histograms with a less overlapping between
hit and FA classes lead to a higherR

2 contribution, which de-
rives in a better hit/FA discrimination. Not surprisingly, the
score is the feature that provides with the highestR

2, since it
represents the confidence that the detection is considered to be
a hit. It is consistent with the histogram-based analysis, where
the score possesses the best hit/FA discrimination among all the
features explored in this work. On the other hand, when theR

2

contribution of a certain feature is small, the histogram reveals a
high degree of overlapping, meaning that such feature does not
disriminate between both classes at all.

6. Conclusions
This work has investigated the individual contribution to the
hit/FA classification in an STD system of both term- and
detection-dependent properties and speech signal-based fea-
tures. It has been shown that short terms are more likely to
produce more errors and therefore more FAs in STD systems.
Terms which posses a similar phone sequence are more likely
to be confused with each other, leading to an increase in the FA
rate, and short duration detections also contribute with a high
FA rate.

Future work will investigate new features based on the most
informative ones explored in this work, since it has been shown
that lattice-, duration- and Levenshtein distance-based features
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Feature Class Feature R2 (%)
Lattice score 42.48
Lattice R0 4.06
Lattice R1 20.29
Lexical Number of graphemes 15.31
Lexical Number of phones 18.81
Lexical Number of vowel graphemes 10.97
Lexical Number of consonant graphemes13.15
Lexical Number of vowel phones 20.58
Lexical Number of consonant phones 8.59
Levenshtein distance Maximum 1.23
Levenshtein distance Minimum 1.02
Levenshtein distance Mean 11.33
Duration Duration of each detection 38.73
Duration Phone speech rate 23.57
Duration Vowel speech rate 21.84
Position Position 0.98
Prosodic Maximum Pitch 1.44
Prosodic Minimum Pitch 0.25
Prosodic Mean Pitch 0.10
Prosodic Maximum Intensity 1.04
Prosodic Minimum Intensity 17.12
Prosodic Mean Intensity 5.64
Prosodic Voicing percentage 4.49

Table 1: Linear Regression analysis of variance results. Re-
sults show the R2 statistic in percentage attributed to each fea-
ture, which can be interpreted as the percentage of variance
explained by each particular feature.

and lexical and prosodic features make an important contribu-
tion to hit/FA classification.
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