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Abstract
We describe a novel feature compensation algorithm based on
the minimum mean square error (MMSE) estimation and stereo
training data for robust speech recognition. The proposed algo-
rithm can be viewed as a piece-wise linear transformation be-
tween the noisy and clean feature spaces, where both spaces are
modeled by means of vector quantization (VQ) codebooks. By
means of this VQ modeling, we show that a very efficient esti-
mator can be obtained in terms of computational cost and recog-
nition accuracy. Also, two approaches are proposed in order to
compensate the acoustic noise distortion. First, we propose a
novel formulation for the normalization of noisy feature vec-
tors. Second, a novel subregion-based modeling is applied to
obtain a better representation of the differences between noisy
and clean domains. The experimental results on noisy digit
recognition show a relative improvement of 61.49% over the
baseline when clean acoustic models are used. Furthermore,
important improvements are achieved in comparison with other
similar approaches.
Index Terms: robust speech recognition, feature compensation,
MMSE estimation, stereo data

1. Introduction
It is well known that the performance of automatic speech
recognition (ASR) systems degrades as the mismatch between
testing and training conditions increases. Thus, there are sev-
eral sources of mismatch that directly affect to the ASR per-
formance, such as variety of speakers, accents, channels and
noise conditions [1]. Many algorithms have been developed
to compensate this mismatch. These algorithms are usually
grouped into two categories [3]: feature-based and model-based
approaches. Feature-based techniques focus on modifying or
enhancing the feature vectors to be closer to the clean train-
ing condition or to be less sensitive to the variability introduced
by the aforementioned sources of mismatch. On the other hand,
model-based approaches adapt the acoustic model parameters to
the testing conditions. These approaches often yield better per-
formance than feature-based ones, especially in low SNR con-
ditions. Nevertheless, feature-based techniques have the advan-
tage that can be seamlessly implemented into existing systems,
since only a module that pre-process the feature vectors before
they are fed into the speech recognizer is needed. In addition,
feature compensation is usually less computationally expensive,
especially if the acoustic environment is rapidly changing.

Stereo data are widely used in order to achieve noise robust-
ness in ASR systems. In this way, a stereo database including
both clean and noisy features can be used to learn the statistical
relationship between both domains. The earliest approach based

on stereo data was proposed in [3] with the SNR-Dependent
Cepstral Normalization (SDCN) and Codeword-Dependent
Cepstral Normalization (CDCN). Since then, more sophisti-
cated techniques have appeared, as multivariate Gaussian based
cepstral normalization algorithm (RATZ) [4], Stereo based
Piecewise LInear Compensation for Environments (SPLICE)
[5], Multi-Environment Models based LInear Normalization
(MEMLIN) [6] and Stereo-based Stochastic Mapping (SSM)
[7]. The later techniques are based on a Minimum Mean
Squared Error (MMSE) estimation, where the clean and/or
noisy domains are represented by means of Gaussian Mixture
Models (GMMs).

In this paper we are also interested in MMSE estimation
for feature compensation, although a different approach is fol-
lowed to represent the clean and noisy domains. Thus, instead
of modeling the clean and noisy feature spaces with GMMs, we
characterize each of these spaces with a set of cells obtained by
means of vector quantization (VQ). As it will be shown, VQ
quantization provides much more efficient compensation tech-
niques, but their results are known to be inferior, due to the
hard decision involved (a cell is represented by a centroid in-
stead of a probability function). For this reason, in this paper
we present a novel MMSE formulation which can cope with
this disadvantage. In addition, we show that the recognition ac-
curacy can be significantly improved by considering that every
VQ cell contains a set of overlapping subregions with provide a
more accurate mapping between the clean and noisy spaces.

This paper is organized as follows. In Section 2, the math-
ematical formulation for the proposed VQ-based MMSE esti-
mation is derived. The experimental framework is described in
Section 3 while the results are presented and discussed in Sec-
tion 4. Finally, Section 5 presents the conclusions and some
directions for future work.

2. Derivation of the proposed MMSE
estimator

We denote by y the observed feature vector representation of a
noisy speech segment distorted by acoustic noise and by x its
corresponding unknown clean version obtained when the seg-
ment is not affected by noise. In this work, we seek for a com-
pensation function that provides an estimate of x given y, i.e.,
x̂ = f(y). Among others, a plausible option to derive this
function is by means of the MMSE criterion. In this case, the
estimate of clean speech is given by

x̂ = E[x|y] =
∫
x

x · p(x|y)dx (1)
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where p(x|y) is the conditional probability of x given y. Dif-
ferent approaches have been proposed to model this distribu-
tion. For example, RATZ [4] models the clean feature space
by means of a GMM and it assumes an additive effect of the
noise on the MFCC domain. On the other hand, SPLICE [5]
models the distorted feature space and, as RATZ, also an addi-
tive effect of the noise is assumed. A more complex modeling
is applied by SSM [7] in which the conditional distribution is
derived from the joint distribution of clean and noisy feature
vectors p(x,y). In this work, however, we follow a different
approach. We assume that the clean and noisy feature spaces
can be independently represented by means of probability den-
sity function (pdf) mixtures in the following way,

p(x) =
∑
kx

p(x|kx)P (kx) (2)

p(y) =
∑
ky

p(y|ky)P (ky) (3)

where kx and ky are components (e.g., Gaussian pdfs) of the
mixtures that model the clean and noisy spaces, respectively.

Using the previous models, the conditional probability
p(x|y) can be expressed as,

p(x|y) =
∑
kx

∑
ky

p (x, kx, ky|y)

=
∑
kx

∑
ky

p (x|kx, ky,y) p (kx|ky,y) p (ky|y) (4)

Finally, applying (4) to (1), the MMSE estimation takes the fol-
lowing form,

x̂ =
∑
kx

∑
ky

E [x|kx, ky,y]P (kx|ky,y)P (ky|y) (5)

where P (ky|y) and P (kx|ky,y) are obtained using the
marginal distributions of eqns. (2)-(3) and stereo training data.
In contrast to other methods, such as MEMLIN [6], where these
two distributions are modeled by means of GMMs, we propose
the use of vector quantization (VQ) codebooks. In this way,
every feature vector space is modeled by means of a VQ code-
book that partitions its space into a set of disjoint cells. We will
notate {C(i)

X (i = 1, . . . ,M)} as the set of cells corresponding
to the clean feature space X and {C(j)

Y (j = 1, . . . , N)} as the
cells of the noisy space Y . These cells will hereinafter play the
role of pdfs kx and ky in eqn. (5).

The VQ codebook of the noisy feature space can be used
now to compute the a posteriori probability P (ky|y) in eqn.
(5) as,

P
(
C

(j)
Y

∣∣∣y) =

{
1 C

(j)
Y = C∗

Y

0 otherwise
(6)

where C∗
Y ≡ C∗

Y (y) is the cell that contains the input feature
vector y according to the following distance,

C∗
Y (y) = argmin

j

{
(µ

(j)
Y − y)

T diag(Σ
(j)
Y )−1(µ

(j)
Y − y)

}
(7)

where diag(·) returns a diagonal matrix with the elements of
the main diagonal of the input matrix, and µ(j)

Y and Σ
(j)
Y are

the mean vector (centroid) and covariance matrix of C(j)
Y .

Applying (6) to (5), the MMSE estimation can be rewritten
as,

x̂ =

M∑
i=1

N∑
j=1

E[x|C(i)
X , C

(j)
Y ,y]P (C

(i)
X |C

(j)
Y ,y)P (C

(j)
Y |y)

≈
M∑
i=1

E
[
x
∣∣∣C(i)

X , C∗
Y ,y

]
P
(
C

(i)
X

∣∣∣C∗
Y

)
(8)

We will refer to this estimation as VQ-based MMSE esti-
mation (VQ-MMSE). As can be observed, the conditional prob-
ability P (kx|ky,y) of eqn. (5) is simplified to P (C

(i)
X

∣∣∣C∗
Y )

in VQ-MMSE. This probability can be estimated using stereo
data. This simplification, along with the application of VQ for
the computation of the noisy component posterior in eqn. (6),
leads to a very efficient implementation of the MMSE estima-
tion. It is important to note that the original input vector y re-
mains in the expected value E[x|C(i)

X , C∗
Y ,y] of eqn. (8) in

spite of the VQ modeling. That is, the VQ modeling is applied
to compute the probabilities required by the MMSE estimation,
but it does not necessarily involve a quantization of the input
that could lead to a performance reduction.

The term E[x|C(i)
X , C∗

Y ,y] in eqn. (8) defines the trans-
formation of feature vectors between cells C(i)

X and C∗
Y due to

acoustic noise. In order to accurately model this transformation,
we introduce in the following the concept of subregion of a VQ
cell. We will consider that every clean cell C(i)

X is composed by
a set of subregions {C(i,j)

X , (j = 1, . . . , N)}, where C(i,j)
X rep-

resents all the clean feature vectors whose corresponding dis-
torted ones belong to the noisy cell C

(j)
Y . Similarly, C

(i,j)
Y

represents the subregion of C
(j)
Y where the feature vectors of

C
(i)
X , once transformed by noise, are mapped. It is interesting

to point out that this refined modeling can also be seen as a
cross-modeling between the clean and noisy domains. Thus, a
subregion defined in a given feature space can be considered as
a part of the projection of a cell defined in the other space.

In order to compensate the noise distortion, we pro-
pose to apply a linear transformation to every feature vector.
To do so, we assume that the subregions in the clean and
noisy feature spaces are Gaussian distributed, i.e., C

(i,j)
X ∼

N (µ
(i,j)
X ,Σ

(i,j)
X ) and C

(i,j)
Y ∼ N (µ

(i,j)
Y ,Σ

(i,j)
Y ), where

µ
(i,j)
X ,µ(i,j)

Y are the mean vectors and Σ
(i,j)
X ,Σ(i,j)

Y the corre-
sponding covariance matrices. Then, the proposed transforma-
tion takes the following form,

E
[
x
∣∣∣C(i)

X , C
(j)
Y ,y

]
= A(i,j)y + b(i,j) (9)

whereA(i,j) and b(i,j) are computed in order to eqn. (9) firstly
normalizes the noisy feature vectors regarding the mean and co-
variance of the noisy subregion, and then transforms them to the
clean domain. Thus, eqn. (9) can be seen as a whitening and
mapping transformation whose parameters are computed as,

A(i,j) =
(
Σ

(i,j)
X

)1/2 (
Σ

(i,j)
Y

)−1/2

(10)

b(i,j) = µ
(i,j)
X −

(
Σ

(i,j)
X

)1/2 (
Σ

(i,j)
Y

)−1/2

µ
(i,j)
Y (11)

where these terms can be precomputed offline for every pair of
cells (C(i)

X , C
(j)
Y ). In addition, the mean vectors and covariance

matrices can be easily computed from a stereo database using
the feature vectors assigned to each subregion.
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Finally, the proposed VQ-MMSE estimation in (8) becomes

x̂ =

M∑
i=1

E
[
x
∣∣∣C(i)

X , C∗
Y ,y

]
P
(
C

(i)
X

∣∣∣C∗
Y

)
=

M∑
i=1

(
A(i,∗)y + b(i,∗)

)
P
(
C

(i)
X

∣∣∣C∗
Y

)
=

(
M∑
i=1

P
(
C

(i)
X

∣∣∣C∗
Y

)
A(i,∗)

)
︸ ︷︷ ︸

A∗

y +

M∑
i=1

P
(
C

(i)
X

∣∣∣C∗
Y

)
b(i,∗)︸ ︷︷ ︸

b∗

= A∗y + b∗ (12)

whereA∗ and b∗ can be precomputed offline. Thus, we can see
that the proposed compensation depends only on the noisy cell
C∗

Y which the input feature vector y belongs to.

3. Experimental framework
Experiments are performed under the framework proposed by
ETSI STQ-Aurora working group using the Aurora-2 database
[8]. This database consists of utterances of connected digits
spoken by American English speakers. For our purposes, we
have extracted the speech data from the clean training set and
the clean utterances from the test set A of this database. The Eu-
ropean Telecommunication Standards Institute front-end (ETSI
FE, ES 201 108) [9] is used in this work. It provides a 13-
dimension feature vector containing 12 Mel-Frequency Cep-
stral Coefficients (MFCCs) (the 0th order one is discarded), plus
the log-energy feature. The recognizer is the one provided by
Aurora-2 using whole word acoustic models trained on clean
speech. Each digit is modeled by means of a 16-state continu-
ous HMM with 3 Gaussians per state. On the other hand, the
silence and short pause models are modeled by means of HMMs
with 3 and 1 states, respectively, and 6 Gaussians per state.

The speech features extracted by ETSI FE are directly pro-
cessed by VQ-MMSE. After the compensation, the dynamic
speech features are computed. VQ codebooks are trained for
every available acoustic condition using a k-means algorithm
which applies the weighted Euclidean distance defined in eqn.
(7). Through this set of codebooks, the compensation param-
eters are estimated for the proposed technique using stereo
data. These compensation parameters account for the possible
transformations due to acoustic noise between the clean fea-
ture space and the noisy one, both modeled by means of VQ
codebooks with the same number of cells. In order to compare
our proposal with other MMSE-based estimators, GMMs are
also trained. Thus, one GMM with diagonal covariance matri-
ces is estimated for every available training condition using the
Expectation-Maximization (EM) algorithm.

A set of 9 acoustic noises is used for training purposes,
namely: airport, highway, babble, bar, beach, pedestrian street,
restaurant, street, and train station. Every noise recording is
split into two parts: two-thirds are employed to train the pro-
posed MMSE estimator while the remaining third is reserved
for testing. The training part is added to the clean training set
of Aurora-2 at 6 different SNRs (20, 15, 10, 5, 0, and -5 dB),
resulting in 54 environmental noisy training conditions plus a
clean condition (55 training conditions in total). In order to
evaluate the performance of our proposal, two different test sets
are defined. The first set, called Set A, is intended to show the
performance of the different techniques when considering the
same environments used for training. Thus, 55 testing condi-
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Figure 1: Oracle results for different feature compensation al-
gorithms based on MMSE regarding the number of components
(Gaussians or VQ cells) used.

tions are defined by artificially contaminating the clean test set
of Aurora-2 with the testing part of the noises. The second set,
called Set B, is created in the same way, but using five new dif-
ferent noises (pedestrian square, car, bus station, heavy sea, and
heavy traffic avenue) at 5 new different SNRs (17.5, 12.5, 7.5,
2.5, and -2.5 dB). Thus, we can evaluate the influence of con-
sidering different environments that the ones used for training.

4. Results
In the first part of this section, we give results for the afore-
mentioned digit recognition task in non-mismatch conditions.
Later, we provide results when the proposed technique is tested
for unknown acoustic noises.

4.1. Oracle experiments

Fig. 1 shows the average word accuracy (WAcc), in percent,
achieved by different estimators for Set A. For these experi-
ments, oracle information about the acoustic noise is assumed,
i.e., each utterance is compensated using a set of compensation
parameters trained under the same noise. It must be pointed out
that this information is not available in practice. However, the
oracle results provide an estimate of the best performance that
could be expected from every technique.

The baseline system applies acoustic models trained with
clean speech and no compensation. This configuration achieves
a WAcc of 50.83%. Three different versions of the pro-
posed VQ-MMSE estimation are evaluated: iVQ-MMSE, dVQ-
MMSE, and fVQ-MMSE. These versions assume identity, diag-
onal, and full covariance matrices, respectively, for the compu-
tation of the expected value in eqn. (9). Also, two well-known
MMSE estimators using GMMs are considered: SPLICE [5]
and MEMLIN [6]. As can be seen, our 3 proposals greatly im-
prove the results achieved by the baseline system and SPLICE
for all GMM and VQ sizes. This improvement shows the bene-
fits of modeling both feature spaces, clean and noisy, instead of
only one space such as SPLICE. Thus, the transformation ap-
plied by our approach is more accurate than in SPLICE. MEM-
LIN achieves a performance slightly better than iVQ-MMSE
(82.62% vs. 82.02% for 256-component codebooks) . In fact,
both techniques are quite similar, although our approach is more
computationally efficient. Further improvements can be ob-
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Set A Set B Avg. Imp.
Baseline 50.83 40.28 45.56 –
SPLICE 72.99 59.45 66.22 45.35

MEMLIN 77.21 62.89 70.05 53.75
iVQ-MMSE 77.29 65.44 71.37 56.64
dVQ-MMSE 79.04 67.18 73.11 60.47
fVQ-MMSE 79.54 67.61 73.57 61.49

Table 1: Average Word Accuracy (%) achieved by SPLICE,
MEMLIN, and VQ-MMSE in the soft-compensation experi-
ments for Set A and Set B (256-components codebooks).

tained when a more complex mapping is applied. This is the
case of dVQ-MMSE and fVQ-MMSE, which compensate the
shifts and scales in the feature domain due to environmental
noise. In this case, our approaches obtain better results than
MEMLIN.

4.2. Soft-compensation experiments

The proposed techniques are also evaluated in a more realis-
tic scenario in which the acoustic noise that distorts the speech
is unknown. In such a scenario, the clean feature vector es-
timate is obtained by means of a soft-compensation approach
[10]. Thus, an estimate x̂e is obtained for every possible envi-
ronmental condition e. The final estimate is computed as a lin-
ear combination of the estimates obtained for all environments.
To do so, GMMs trained on every environmental condition are
employed as environment classifiers to obtain the required prob-
abilities P (e|y). It must be pointed out that these GMMs are the
same as those employed by SPLICE and MEMLIN, although a
more sophisticated environment modeling could be applied.

Table 1 shows the recognition results achieved in the soft-
compensation experiments for Set A and Set B when codebooks
(GMMs or VQ codebooks) with 256 components are used. The
average word accuracy (Avg.) and the relative improvement
over the baseline in percent (Imp.) are also shown. As can be
seen, all techniques suffer a performance degradation regard-
ing the oracle experiments for Set A. This degradation is pro-
duced by mismatches in the environment identification. Fur-
thermore, all methods yield poorer results for Set B. This is
one of the lacks of the soft-compensation approach: the perfor-
mance drops in mismatch situations. Nevertheless, these results
demonstrate again the superior performance of our proposal.
Thus, fVQ-MMSE achieves relative improvements of 11.10%
and 5.03% in comparison with SPLICE and MEMLIN, respec-
tively. Furthermore, now iVQ-MMSE outperforms MEMLIN.

5. Conclusions
In this paper, we have presented a novel feature compensation
technique based on MMSE estimation and stereo training data
for robust speech recognition. As a result, a piece-wise lin-
ear function between the noisy feature space and the clean one
is obtained. We show that the application of VQ codebooks
for the modeling of the feature spaces allows an efficient im-
plementation of the MMSE estimator. Also, a novel subregion
modeling is applied in order to accurately represent the acoustic
noise distortion.

Two sets of experiments are carried out. Firstly, oracle ex-
periments are conducted to obtain an upper bound of the perfor-
mance that could be expected under non-mismatch. Secondly,
the proposed techniques are also tested with unknown noises.

In these experiments, we follow a soft-compensation approach
in which the clean feature vector estimate is obtained as a linear
combination of the estimates obtained for several defined en-
vironments. A relative improvement of 61.49% regarding the
baseline is achieved for these experiments. Furthermore, rela-
tive improvements of 11.10% and 5.03% are obtained in com-
parison with two other well-known MMSE-based compensation
algorithms: SPLICE and MEMLIN.

The experimental results show the importance of modeling
both feature spaces (clean and noisy) in order to obtain an accu-
rate probability model for the MMSE estimation. Furthermore,
the proposed normalization of noisy feature vectors and the
more accurate representation of the noise distortion by means
of the proposed subregion modeling, lead to further improve-
ments. Finally, we think that the application of the proposed
feature compensation algorithm to scenarios where stereo data
is unavailable is an interesting issue that deserves more research
in the future.
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