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Abstract

This paper presents the results on an Automatic Speech Recog-
nition (ASR) framework that takes advantage of robust vocal
tract length estimation methods for improving the performance
of speech recognition in the presence of speakers with differ-
ent conditions in age and gender. Well known techniques for
Vocal Tract Length Normalization (VTLN) usually require pre-
vious stages for the estimation of the best warping factor for a
given speaker, either by Maximum Likelihood (ML) estimates
or by the calculation of acoustic features from the speakers
like formant frecuencies through several utterances. This pa-
per will show how to use robust framewise estimations of the
vocal tract length to obtain a speaker dependent warping fac-
tor for achieving major improvements over all conditions of the
TIDigits database. In the end, an updating function will be used
to calculate an on-line estimate of the vocal tract length and
the warping factor to use real time VTLN in speech recognition
with similar results to the off-line strategies.
Index Terms: vocal tract length estimation, speech recognition,
speaker normalization

1. Introduction
The mismatch between the set of speakers used to train a given
acoustic model for Automatic Speech Recognition (ASR) and
the set of speakers which are recognized in that ASR system can
seriously degrade the performance of the recognition results.
A well known source of mismatch are the anatomical features
that different speakers may have regarding the structure or their
vocal tract. The vocal tract, and more precisely its length, varies
largely from one speaker to another, especially if the range of
speakers gathers males, females, adults or children. All this can
make an ASR system trained on adults perform poorly in the
presence of children speech and vice versa.

Different possibilities have arisen for the reduction of this
mismatch between training data and recognition data. Some of
them require a re-training of the acoustic models, as in speaker
adaptation techniques like Maximum A Posteriori (MAP) [1]
or Maximum Likelihood Linear Regression (MLLR) [2]; while
some others act on the speech signal and keep the models un-
changed. Vocal Tract Length Normalization (VTLN) is a well
known technique for reducing this mismatch without modifying
the initial acoustic modeling [3]. It considers that the main dif-
ference between two speakers is the change in the frequency
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axis due to the difference in vocal tract length between the
speakers.

However, VTLN techniques usually require of large com-
putational delays, as they need to process speech data from the
speaker in advance to estimate which is the best transformation
from the speaker’s frequency axis to the target speakers’ fre-
quency axis. This makes that most of VTLN-based techniques
can not provide their improvement in the ASR performance in
a real-time situation. The proposal in this work wants to ad-
vance in the field of providing this improvement in a real-time
on-line framework. It makes use of robust speech processing al-
gorithms to give a frame-by-frame estimation of the vocal tract
length of the speaker, in such a way that it allows for providing
a transformation factor for a given speaker without requiring
more information that the current frame and previous frames.

The paper is organized as follows: Section 2 will review the
basis of VTLN techniques and the different existing approaches.
Section 3 will present the signal processing techniques which
lead to a robust framewise vocal tract length calculation for
all speakers and Section 4 will present the three VTLN tech-
niques evaluated in this paper, including the on-line real-time
approach. Next, in Section 5 the results and improvements
achieved with the evaluated methods over the different condi-
tions of the TIDigits database will be shown. Finally, Section 6
will provide the conclusions to this work.

2. Vocal Tract Length Normalization
The aim of VTLN is to provide a warping function that trans-
forms the frequency axis from a given speaker (f ) to the fre-
quency axis of a target speaker or a target group (f ′). Many
different possibilities have been researched in the literature to
provide the function which reflects this transformation, from
piecewise linear approaches to exponential functions. All of
them depend on a warping factor, α like in Equation 1, which
contracts or expands the spectrum of the speech signal in the
desired way [3].

Swarped(f) = Sunwarped(f ′(α, f)) (1)

A warping factor that contracts the frequency axis is used
to transform speakers with shorter vocal tracts (mainly chil-
dren and women) towards speakers with the longest vocal tracts
(i.e. men), and a warping factor that expands this axis is used
for warping speakers with longer vocal tracts (men) towards
the shortest ones (children or women). A more efficient pro-
posal has been proposed for ASR consisting in transforming and
warping the Mel-scale filter banks during the Mel-Frequency

FALA 2010
VI Jornadas en Tecnología del Habla and II Iberian SLTech Workshop

-119-



Cepstral Coefficients (MFCC) calculation, instead of warping
all the input frames from the speaker.

2.1. Estimation of the Warping Factor

The estimation of the warping factor α for a given speaker or
utterance is the most delicate part in the use of VTLN. An inad-
equate factor may reduce the potential improvement provided
by VTLN, or even produce a loss in performance.

Two trends in the proposals for estimating the warping
factor can be observed in the literature: On one hand, Maxi-
mum Likelihood (ML) based proposals select that warping fac-
tor which achieves the highest score by forced aligning several
versions of the input utterances, warped with different factors,
to the acoustic model for recognition [3]; on the other hand,
feature-based proposals use acoustic features from the speaker
like formants, or a combination of them, to estimate the warp-
ing factor, as it is known that the formant frequencies correlate
to the vocal tract length of the speaker [4].

3. Vocal Tract Length Estimation
Although many methods rely on the estimation of speaker fea-
tures which can be correlated to the vocal tract length to calcu-
late the optimum warping factor, there have been little efforts
to estimate the actual vocal tract length. Difficulties in the es-
timation of this anatomical measure, especially in the presence
of voices with a high fundamental frequency, have limited the
development of methods based on direct vocal tract length esti-
mation. This Section will describe a robust method to estimate
this value for all possible speakers with the aim of using it as
estimator of the optimal warping factor.

Modeling the vocal tract as a uniform lossless acoustic tube,
its resonant frequencies given by Equation (2) are uniformly
spaced, where v = 35300 cm/s is the speed of sound at 35 ◦C,
and l is the length of the uniform tube in cm.

Fk =
v

4l
(2k − 1), k = 1, 2, 3, . . . (2)

The estimation of the length was proposed in [5], and it can
be reduced to fitting the set of resonance frequencies of a uni-
form tube, which are determined solely by its length l. There-
fore, the problem can be approximated to minimizing Equation
3, where D(F̃k, (2k − 1)F1) is a function that express the dif-
ference between the measured formants F̃k(k = 1, ...,M) and
the resonance of the uniform tube.

ε =

M∑
k=1

D(F̃k, (2k − 1)F1) =

M∑
k=1

D(F̃k, (2k − 1)
v

4l
) (3)

From [5], the error measure given in equation (3) can be
turned in Equation 4 using the distance function between the
measured formants(F̃k) and the odd resonances of a uniform
tube, (2k − 1)F1.

ε =

M∑
k=1

( F̃k
2k−1

− F1)
2

F1
(4)

The formant frequencies F̃k are extracted using traditional
Linear Prediction Coefficients (LPC) method with order p = 8,
over a 25 ms long speech frame. The filter coefficients for
the all-pole vocal tract model are obtained through Durbin’s
recursion using the autocorrelation method, after Hamming-
windowing the pre-emphasized speech frame.
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Figure 1: Effect of liftering in the real cepstrum domain

Finally, the vocal tract length can be obtained with the ex-
pression in Equation 5 which makes use of the estimated res-
onance frequency of the uniform tube (F1), calculated from
Equation 4 as in Equation 6.

V TL =
v

4F1
(5)

F1 =

(
1

M

∑
k

(
F̃k

2k − 1

)2
)1/2

(6)

3.1. Robust Formant Estimation in High Pitch Voices

The formant measurement is technically difficult. The situa-
tion is less severe in male adult cases in which the fundamental
frequencies (F0) are low [6]. In women and children F0 in-
creases, so F0 and its harmonics could get closer to the range
of the formant values affecting the estimation [7]. The conven-
tional autocorrelation method with the LPC parameters works
well in signals with a long pitch period (low-pitched), but as the
pitch period in high-pitched speech is small, the periodic repli-
cas cause aliasing in the autocorrelation sequence. In that case
it is required to separate these effects in order to obtain formants
not contaminated by F0 by means of homomorphic analysis.

The main idea within the homomorphic analysis is the de-
convolution of a segment of speech x[n] into a component rep-
resenting the vocal tract impulse response e[n], and a compo-
nent representing the excitation source h[n] as in Equation 7.

x[n] = e[n] ∗ h[n] (7)

The way in which such separation is achieved is through
linear filtering of the cepstrum, defined as the inverse Fourier
transform of the log spectrum of the signal. As the cepstrum
in the complex domain is not suitable to be used because of
its high sensitivity to phase[8], the real-domain cepstrum c[n]
defined by Equation (8) is used, where X(k) is the N-point
Fourier transform of the speech signal x[n].

c[n] =
1

N

N−1∑
k=0

ln |X(k)| ej 2π
N

kn, 0 ≤ n ≤ N − 1 (8)

The values of c[n] around the origin correspond primarily
to the vocal tract impulse information, while the farthest values
are affected mostly by the excitation. Knowing previously the
value of the pitch period Tpitch from the LPC analysis using
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the autocorrelation method it is possible to filter the cepstrum
signal (liftering) and use the liftered signal to find the formant
frequencies, once the signal is back in the time-domain.

A liftering window with the length of 0.5Tpitch has been
proposed in [9] or 0.6 − 0.7Tpitch in [10]. In this work, the
liftering window w[n] is 0.65Tpitch and the effect of appliying
w[n] in the real cepstrum domain can be observed in Figure 1.

4. VTLN Techniques Applied in ASR
Two VTLN techniques were initially compared in this work,
first one was a state of the art ML-based approach, while sec-
ond one was based on the proposal for robust vocal tract length
calculation in Section 3. An exponential function was used for
the warping of the Mel-scale bank filters in the MFCC calcu-
lation. No model adaptation was performed in the experiments
and, hence, no Jacobian compensation was done as previous
results reported how this feature degraded performance in the
presence of unadapted models [11, 12].

The ML-based technique was based on the diagram seen in
Figure 2 [3], where an initial ASR stage obtained an estimate
of the transcription of the uttered sentence. A set of n Viterbi
alignment decoders using a set of warping factors {α1...αn}
decided the most likely of those warping factors according to
the score achieved by each decoder. Finally, that warping factor
was used in a second ASR stage which made use of VTLN to
improve the estimation of the output utterance and provide a
final result. This work used 11 warping factors in the Viterbi
decoding phase, ranging from 0.9 to 1.1 in 0.02 intervals.

The feature-based technique to be evaluated in this work
used the framewise estimation of the vocal tract length as seen
in Section 3. This estimation provided a value of the vocal tract
length in the sonorant frames and a void output in the rest of
frames (silence and unvoiced sounds). From all the valid esti-
mations of one speaker, the mean of the vocal tract length for
the speaker was calculated (V TLspk) and the warping factor
was obtained as in Equation 9, where V TLmodel was the mean
of the vocal tract lengths calculated for all the speakers used in
the training of the acoustic model, which could be easily done
in the prior training phase. The factor λ was used to moderate
the amount of warping applied, and was set to λ = 0.5 after a
prior development set of experiments on smaller databases.

α = 1 + λ
V TLmodel − V TLspk

V TLmodel

(9)

4.1. On-line Vocal Tract Length Estimation

The main drawback of the VTLN techniques shown previously
was that they required previous stages to estimate the warping
factor. The ML-based strategy required three stages for each ut-
terance (initial recognition, decision of the warping factor and
final recognition), while the feature-based strategy required that
several utterances from a speaker were available to estimate
robustly the mean of the vocal tract length from that speaker.
These approaches were not feasible for real world applications
which should provide a real-time decoding of the input speech
utterance.

The proposal in this work was, as the calculation of the
vocal tract length was robust in a framewise approach, to re-
estimate the vocal tract length for each frame as in Equation
10, where β is the memory factor of the system. The value
estimated for the vocal tract length in a given frame i only de-
pended on its value in the previous frame i − 1 and the actual

Figure 2: ML-based VTLN diagram

value of vocal tract length estimated for frame i: V TL(i). This
approach avoided the influence of local variations of the vo-
cal tract length, while tending to the mean value of the speaker
when sufficient frames were analyzed. A memory factor of
β = 0.99 was used for the experimentation.

V TLspk(i) = β ∗V TLspk(i− 1) + (1− β) ∗V TL(i) (10)

This way, when a speaker accessed for the first time to the
ASR system, the vocal tract length was initialized with the vo-
cal tract length of the target model as in Equation 11; as every
new sonorant frame was available and a value of the vocal tract
length was provided for that frame, the vocal tract length for
the speaker was updated according to Equation 10 (again with
λ = 0.5), and the warping factor for that frame calculated as in
Equation 12.

V TLspk(0) = V TLmodel (11)

α(i) = 1 + λ
V TLmodel − V TLspk(i)

V TLmodel

(12)

5. Experimental Framework and Results
The evaluation of the techniques proposed here was made over
the TIDigits database [13]. This corpus contains 25 boys, 26
girls, 55 men and 57 women for the training of models and 25
boys, 25 girls, 56 men and 57 women for the recognition eval-
uation. Seven conditions were designed with seven different
acoustic models trained for each condition: Boys, girls, men,
women, adults (men and women), child (boys and girls) and all
speakers. Recognition was performed over all the 163 speakers
available for evaluation.

A set of 11 word Hidden Markov Models (HMM) repre-
senting digits in English were trained for each condition. An
ETSI-like front end was used to extract the MFCC parameters
from each signal, using the 12 first static parameters (c1-c12)
plus log-energy and their first and second derivatives for the fi-
nal 39 dimension feature vectors. The ASR system used for the
experiments was a state of the art Viterbi decoder.

The baseline results in first row of Table 1 in terms of Word
Error Rate (WER) showed the big influence of acoustic mis-
match between models and speakers for recognition. The recog-
nition results provided are the ones obtained for the recognition
of the test data from boys, girls, men and women. Worst results
were achieved with models from men speech, as men presented
the longest vocal tracts, which separates greatly from the rest of
the speakers. On the other edge, girls have the shortest vocal
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Table 1: Results in WER for the TIDigits database: Models trained on boy, girl, man, woman, adult, child and all speech
Boy Girl Man Woman Adult Child All

Baseline 7.37% 19.21% 25.17% 5.32% 2.01% 8.20% 0.65%
Off-line ML-based VTLN 2.47% 5.26% 8.58% 1.28% 1.05% 2.40% 0.57%

Off-line vocal tract estimated VTLN 2.84% 5.37% 11.25% 1.94% 1.19% 2.81% 0.66%
Off-line vocal tract estimated VTLN (liftering) 2.35% 3.92% 10.15% 1.57% 1.07% 2.18% 0.65%

On-line vocal tract estimated VTLN 2.61% 4.78% 10.48% 1.82% 1.18% 2.49% 0.65%

Table 2: Mean vocal tract length in cms with standard devia-
tion intervals estimated for the speaker groups in the TIDigits
database

Train speakers
Boy Girl Man Woman

VTL 16.0±0.64 15.5±0.65 18.8±0.67 16.6±0.64
Test speakers

Boy Girl Man Woman
VTL 15.9±0.74 15.4±0.58 18.8±0.71 16.6±0.63

tract and the models trained from girls speech also performed
poorly. The model trained with all the speech matched perfectly
the recognition speakers and achieved a 0.65% of WER.

The off-line techniques to be evaluated in this work
achieved the results in the second, third and fourth rows of Ta-
ble 1 for the ML-based VTLN and two versions of the feature-
based technique respectively. The performance of both tech-
niques was similar, with some differences across all the con-
ditions which indicated that the vocal tract length estimation
in Section 3 was as good as the state of the art techniques for
speaker normalization in ASR. It was noticed the improvement
that the use of liftering, seen in Section 3.1, produced in reduc-
tion of the WER; showing the need for using robust formant
estimation techniques when dealing with variable speech.

More precisely, the VTLN based on direct estimation of
the vocal tract length with liftering achieved better results with
those models trained on boys, girls and children altogether;
while the ML-based technique performed better with models
trained on men, women and adults. Performance on the model
trained with all speakers was similar for both techniques. Table
2 shows the mean values with their standard deviation of the
vocal tract lengths for all the speakers in the TIDigits database
with the estimation method of Section 3. These values confirm
the big mismatch between the different group, especially men
versus the rest of the groups; and confirmed the need of apply-
ing the speaker normalization techniques studied in this work.
The robustness of the estimation of these values was seen in
their good statistical properties across speakers.

Finally, the on-line technique proposed in Section 4.1
achieved the results shown in fifth row of Table 1. Although
a certain decrease of performance was noticed throughout most
of the conditions, the results were comparable to those of the
off-line version of the algorithm and confirmed the possibilities
of performing real-time VTLN in ASR with results similar to
the state of the art off-line techniques.

6. Conclusions
The main result and conclusion of this work is the development
of a method for applying successful on-line speaker normaliza-
tion in ASR. This method relies in a robust estimation of the
vocal tract length from the speaker at the frame level, which
allows to apply a warping factor which can be updated and im-
proved as more data from the user is available. This overcomes

the drawback from traditional VTLN techniques where speech
utterances are processed in several stages to obtain the desired
improvement. Furthermore, the proposed method relies only in
voice features from the speaker and is not based in models and
likelihood measures as previous approaches.

The use of techniques for enhancing the formant estimation
methods and thus, improving the vocal tract length calculation,
makes suitable this speaker normalization method for all types
of speakers (children or adults), independently of the value in
fundamental frequency of the speaker. This is a relevant im-
provement over other techniques for the estimation of acoustic
features like formants which may face difficulties in the pres-
ence of speech with a high fundamental frequency.
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