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Abstract

This paper presents an approach to automatic segmentation of
speech corpora. The availability of sufficiently precise labelled
sentences can avoid the need for a segmentation by human ex-
perts. The goal of this process is to prepare speech corpora both
for training acoustic models and for concatenative text to speech
synthesis.

Our system only needs the speech signal and the phonetic
sequence for each sentence of a corpus. It estimates a GMM by
using all sentences, where each Gaussian distribution represents
an acoustic class. Then it combines the probability densities
of each acoustic class with a set of conditional probabilities in
order to estimate the probability densities of the states of each
phonetic unit. A DTW algorithm fixes the phonetic boundaries
using the known phonetic sequence. This DTW is a step inside
an iterative process which aims to segment the corpus and re-
estimate the conditional probabilities. A flat start setup is used
to give initial values to the conditional probabilities.
Index Terms: automatic speech segmentation, phoneme
boundaries detection, phoneme alignment

1. Introduction
The two main applications of phonetic level segmentation are
text to speech synthesis and acoustic models training. In both
cases it is useful to have as many labelled sentences as possible.
Doing this labelling task by hand implies a great effort that can
be very expensive. Furthermore, as some authors point, manual
segmentations of a single corpus carried out by different experts
can have significant differences, thus it is reasonable to use au-
tomatic segmentations. As an example, some researchers have
given the same speech database to different human experts to
segment it. Then, they evaluated the differences between the
manual segmentations obtained. In [1], 97% of the boundaries
within a tolerance interval of 20 ms were found, and 93% in [2].

There are several different approaches to the automatic seg-
mentation of sentences when the phonetic sequence is available.
Most of them are systems in two stages: the first one is per-
formed by a Hidden Markov Model (HMM) based phonetic rec-
ognizer using the Viterbi forced alignment, and the second one
adjusts the phonetic boundaries. In [1, 3, 4] different pattern
recognition approaches are proposed for the local adjustment of
boundaries. [5] presents a HMM based approach where pronun-
ciation variation rules are applied and a recognition network is
generated for each sentence. Then a Viterbi search determines
the most likely path and obtains an adapted phonetic transcrip-
tion for each sentence. This process is repeated until the adapted
phonetic transcriptions do not change any more. Initial phone
HMMs are generated with flat-start training using the canonical
transcriptions of the sentences.

A Dynamic Time Warping (DTW) based method which
aligns the spoken utterance with a reference synthetic signal
produced by waveform concatenation is proposed in [6]. The
known phonetic sequence of each sentence is used to generate
the synthetic signal. The alignment cost function is computed
using a combination of acoustic features depending on the pair
of phonetic segment classes being aligned. In [7] a set of au-
tomatic segmentation machines are simultaneously applied to
draw the final boundary time marks from the multiple segmenta-
tion results. Then, a candidate selector trained over a manually-
segmented speech database is applied to identify the best time
marks.

An approach inspired by the minimum phone error training
algorithm for automatic speech recognition [8] is presented in
[9]. The objective of this approach is to minimize the expected
boundary errors over a set of phonetic alignments represented
as a phonetic lattice.

A quite different approach is presented in [10], which uses
an extension of the Baum-Welch algorithm for training HMM
that uses explicit phoneme segmentation to constrain the for-
ward and backward lattice. This approach improves the ac-
curacy of automatic phoneme segmentation and is even more
computationally efficient than the original Baum-Welch.

A technique which modifies the topology of the HMM to
control for duration is presented in [11]. The prototype for all
phones is defined as a 5-state left-right topology with duration
control states at each end. This topology improves segmenta-
tion accuracy by reducing the probability of remaining in the
beginning and end states as these states model the boundaries
between phonetic units. The acoustic vectors at the transition
from one phonetic unit to the other are clustered at these states.

In this paper we present a phonetic level automatic speech
segmentation technique based on the same idea of altering the
topology of the HMM. Nevertheless, we calculate the emis-
sion probabilities in a different way, the forced alignment is
performed by means of a DTW algorithm and we do not use
any manually segmented sentences. Emission probabilities are
computed by combining acoustic probabilities with conditional
probabilities estimated ad hoc. The conditional probabilities re-
flect the relation between the acoustic and the phonetic proba-
bility densities. The estimation of these conditional probabil-
ities is done by means of an iterative process of progressive
refinement which segments all sentences of the training set at
every step. The initial values given to the conditional probabili-
ties are calculated using a flat start setup, and the acoustic prob-
ability densities are computed from a GMM (Gaussian Mixture
Model) obtained as a result of a clustering process.

Next, we describe in Section 2 the proposed approach for
automatic speech segmentation. Then, in Section 3, we show
and comment the experimentation results. Finally, we conclude
in Section 4.
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2. System description
A DTW algorithm to automatically segment each sentence is
used. This algorithm aligns the sequence of states with respect
to the sequence of acoustic frames. The sequence of states is
composed by concatenating the model of each phonetic unit
from the known phonetic sequence. There are two relevant con-
straints on the topology of the models, that are the number of
states and the number of duration control states. Figure 1 shows
a model with 8 emitting states and 3 duration control states at
both sides, similar to the ones proposed in [11]. The number
of states sets the minimum number of frames assigned to each
phonetic unit.

1.0 1.0 1.0 1.0 1.01.00.5 0.5

0.50.5

Figure 1: An 8 emitting states HMM with 3 duration control
states at each side.

The alignment cost function used in the DTW algorithm
uses Pr(eu

i |xt) as the emission probability, which represents
the posterior probability of each state given an acoustic vec-
tor, where eu

i is the i-th state of the phonetic unit u. For each
acoustic frame xt we obtain another vector with the phonetic
level probabilities {Pr(eu

i |xt)} ∀u ∈ U , i = 1..E(u), where
U is the set of phonetic units and E(u) is the number of states
of the phonetic unit u. Applying this process to each frame of
an utterance we obtain as a result a sequence of vectors with the
probability of each state of each phonetic unit.

2.1. Acoustic probabilities

The acoustic probabilities are computed from a GMM where
each Gaussian distribution represents an acoustic class. The
GMM is estimated by means of a clustering procedure using
as training samples all the acoustic vectors from every training
sentence. The unsupervised learning of the means and diagonal
covariances for each acoustic class has been done by maximum
likelihood estimation as described in [12].

The underlying idea of our approach is based on the
fact that, once we transform the waveform into frames (d-
dimensional acoustic vectors), they are distributed into a region
of Rd, in such a way that more dense subregions are formed
according to similar acoustic phonetic features. The dense sub-
regions can be related to different acoustical manifestations of
speech. Each phonetic unit can have many acoustically differ-
ent ways of being pronounced due to, among other phenomena,
the mood and the accent of the speaker. Context is also an im-
portant factor that affects to the way a phoneme is pronounced,
previous and following phonemes influence the one being ut-
tered. In addition, not all the possible acoustic manifestations
are related to an only phoneme, but many of them fall in the in-
tersection of two or more phonemes. So, we can conclude that
the subregions of each phoneme are neither isolated nor contin-
uous.

In short, we can consider that the phonetic units are dis-
tributed in overlapped subregions inside Rd, and that the natural
acoustic classes allow us to model more precisely the region of
this space where acoustic frames are distributed. It is easy to
see that the number of acoustic classes will be much larger than
the number of phonetic units.

2.2. Phonetic probabilities

To take into account the different degrees of relation between
a phonetic class and a phonetic unit we have used conditional
probabilities estimated for this goal. So, for each state we have
Pr(a|eu

i ), which represents the conditional probability that the
acoustic class a has occurred having that the phonetic unit u has
been pronounced and its internal state eu

i is active.
We can compute the class-conditional probability density

function of observing the acoustic frame xt assuming that the
acoustic class a has been manifested, p(xt|a), according to the
GMM. Nevertheless, we need the phonetic-conditional proba-
bility density function of observing the acoustic frame xt given
the state eu

i , that can be calculated as follows:

p(xt|eu
i ) =

X
a∈A

p(xt|a) · Pr(a|eu
i ) (1)

Applying the Bayes rule we can obtain the posterior proba-
bility of each phonetic state given a frame:

Pr(eu
i |xt) =

p(xt|eu
i )π(eu

i )P
v∈U

E(v)P
j=1

p(xt|ev
j )π(ev

j )

(2)

where π(·) is the prior probability of each state of each phonetic
unit. In our approach we consider that all the prior probabilities
are the same, so we can eliminate them. Taking this into account
and expanding Equation 2 according to Equation 1 we have:

Pr(eu
i |xt) =

P
a∈A p(xt|a) · Pr(a|eu

i )P
v∈U

E(v)P
j=1

“P
a∈A p(xt|a) · Pr(a|ev

j )
” (3)

The conditional probabilities Pr(a|eu
i ) can be estimated ei-

ther in a supervised way, using a manually segmented and la-
belled corpus, or in an unsupervised way, using an iterative pro-
cess of progressive refinement like the one proposed here.

The initial values of the conditional probabilities are cal-
culated using a flat start setup. Then the iterative process that
re-estimates the conditional probabilities starts and goes on un-
til there are no significant changes.

2.3. DTW state alignment

The DTW algorithm used to align the sequence of states against
the sequence of acoustic frames obtains the phonetic level seg-
mentation. For each sentence we can build the sequence of
states by concatenating the models of the phonetic units that
were pronounced. It is important to highlight that each phonetic
unit can have a different number of states according to its nature.
Figure 2 shows the allowed movements inside the DTW matrix
for an example corresponding to the join between two phonetic
unit models, with one duration control state at each end. We
can observe that horizontal movements are forbidden for the
duration control states, which only allow diagonal movements.
Vertical movements are not allowed, since it would imply that
an only frame is assigned to more than one state.

3. Experimentation results
In this section we describe the performed experiments and the
obtained results. First, we present the speech corpus used for
testing our system and comment the evaluation criteria. Next,
the results for different combinations of the total number of
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Figure 2: Example of possible movements in our DTW focused
on the join between two phonetic units.

states and the number of duration control states at each end
are presented. Our goal was to find the optimal topology for
all phonetic units, so we repeated the training and testing pro-
cesses using different configurations. When the best configu-
rations were detected, we focused on those phonetic units we
considered should have a different number of states, so we tried
to achieve better results modifying their particular topology.

We also tested what happened when we did not allow the re-
estimation of the transition probabilities of central states. The
obtained results show that re-estimating the transition probabil-
ities runs worse than not re-estimating them for every topology
tested. Only results obtained with the best modality are pre-
sented here.

3.1. Speech corpus

The phonetic subcorpus from Albayzin database [14] that was
used for the experiments is composed by 6,800 utterances
(around six hours of speech) obtained by making groups from a
set of 700 different sentences uttered by 40 different speakers.
1,200 sentences manually segmented and labelled were used for
testing and the remaining 5,600 sentences were used for train-
ing. There are no common speakers between the training and
test subcorpora.

Each acoustic frame is a 39-dimensional vector composed
by the normalized energy, the first 12 Mel frequency cepstral
coefficients and their first and second time derivatives. Each
acoustic frame was obtained using a 20 ms Hamming window
every 5 ms.

It is worth to say that we did not use the original training
and test subsets that had the database because all the manually
segmented and labelled sentences were included in the training
subcorpus. So, we used the subset of 1,200 manually segmented
and labelled sentences for testing and the 5,600 remaining sen-
tences for training.

3.2. Evaluation criteria

The evaluation criteria most widely used in the literature is to
measure the agreement of the obtained segmentation with re-
spect to a manual segmentation. Usually the percentage of

boundaries whose error is within a tolerance is calculated for
a range of tolerances [1, 2, 13].

As discussed in the introduction, some researchers have
wondered whether or not a manual segmentation is a valid ref-
erence [1, 2]. To evaluate it, they gave the same speech database
to different human experts to segment it, and then evaluated the
differences between them. In the study presented in [1], 97%
of the boundaries within a tolerance of 20 ms were found and
in [2] 93%. We interpret this agreement as the maximum ac-
curacy for a segmentation system, since a system that reaches
100% compared with a manual segmentation will at least dif-
fer around 95% with another manual segmentation for the same
speech database.

3.3. Experimental results

Our system has been evaluated for different combinations of the
number of emitting states and duration control states. Table 1
presents the results obtained using different E × B topologies,
where E represents the number of emitting states and B the
number of duration control ones. Furthermore, Figure 3 shows
a graphic representation of the same results, where a significant
improvement is easily observed when tolerance increases from
10 to 20 ms.

Table 1: Percentage of correctly fixed phonetic boundaries for
a range of tolerances.

Tolerance en ms
Topology 5 10 15 20 30 50

3x0 23.8 47.2 66.9 80.6 92.0 97.9
3x1 26.6 51.9 70.0 82.0 92.4 97.8
5x0 28.4 52.5 71.3 83.3 93.4 98.3
5x1 32.3 58.6 76.5 87.0 94.7 98.6
5x2 36.7 62.6 78.7 88.0 94.8 98.5
6x2 37.0 63.1 79.2 88.5 95.2 98.8
7x0 32.6 58.8 75.9 85.9 94.9 98.6
7x1 34.0 61.3 79.0 88.5 95.5 98.8
7x2 34.6 62.1 79.5 88.7 95.4 98.7
7x3 35.7 63.6 80.5 89.1 95.4 98.8
8x3 40.3 67.2 81.9 89.0 95.8 99.0
9x2 37.4 65.7 81.2 88.5 92.5 95.3
9x3 39.4 67.6 82.2 89.0 95.7 98.9
9x4 42.4 69.2 82.0 88.6 95.3 98.8

Results show a significant improvement when duration con-
trol states at each end are used. Also we can observe that the
more restrictive a tolerance interval is, the more relevant is the
improvement we achieve. For example, if E = 7 then the seg-
mentation accuracy improves from 58.8% to 63.6% as B in-
creases, for a tolerance error of 10 ms, and from 85.9% to 89.1%
for 20 ms. By observing the results for different values of E we
can detect a better performance when all the states except the
central ones are duration control states.

As mentioned above, our system begins the learning pro-
cess from a flat start setup and then iterates to re-estimate the
conditional probabilities which relate the acoustic probability
densities to the phonetic ones. Figure 4 shows the evolution of
segmentation accuracy for several topologies within a tolerance
interval of 20 ms. No significant improvements are obtained
from 15th step, and we can clearly see the difference of seg-
mentation accuracy when the 7× 0 topology was used.

FALA 2010 - VI Jornadas en Tecnología del Habla and II Iberian SLTech Workshop

-125-



 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  10  20  30  40  50  60  70  80  90  100

Tolerancia en ms

3x0
3x1
5x0
5x1
5x2
6x2
7x0
7x1
7x2
7x3
8x3
9x2
9x3
9x4

Figure 3: Evolution of segmentation accuracy in function of tol-
erance error.
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Figure 4: Evolution of segmentation accuracy in function of it-
erative steps with a tolerance error of 20 ms.

Taking into account that the subsampling rate is 200 Hz, a
HMM with 8 emitting states forces a minimum phone duration
of 40 ms, which is longer than usual for some phonetic units.
The topologies of voiced plosives /b/, /d/ and /g/ differs from
the topologies of the remaining units when using models with
more than 7 emitting states. In this particular case, a 5 × 2
topology was used and the results improved significantly when
this change was applied. The topologies of voiceless plosives
/p/, /t/ and /k/ were not different from the topologies used for
the rest of units. The burst of these plosives is always preceded
by a short silence. So, voiceless plosives do not need a special
topology because the frames of preceding silence are properly
clustered by the HMM states. Finally, the phonetic unit repre-
senting silences is considered a special case, for which we used
a 3× 0 topology.

4. Conclusions
We have presented here an automatic segmentation technique
which combines three ideas. The first one consists in using du-
ration control states at each end of each HMM and in increasing
the number of emitting states. This idea improves significantly
the segmentation accuracy as it was shown by some researchers
[11]. The second one, detailed in Section 2, deals with the way

emission probabilities are calculated. The third idea consists in
using a DTW algorithm to align the sequence of states against
the sequence of acoustic frames.

The main goal of our approach is to automatically segment
speech corpora for training acoustic models without making use
of any subset of manually segmented and labelled sentences. A
segmentation accuracy close to 90% within a tolerance of 20 ms
enables our system to be used for this purpose. In addition, our
system can be useful for concatenative text-to-speech synthesis.
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