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Abstract
The Maximum Likelihood Linear Regression (MLLR) tech-
nique has commonly been used in speaker adaptation. In the
computation of the transformation matrix usually only one iter-
ation of the Expectation-Maximisation (EM) algorithm is used,
but there is not a complete study about results with a different
number of iterations. We analyze how the number of iterations
affects to the adaptation. The obtained results lead us to sug-
gest a new method to accelerate the convergence of adaptation.
Additionally, we propose a way to verify the contribution of the
different adaptation matrices obtained in the EM process. We
present experiments with the Wall Street Journal corpus whose
aim is to determine the best option for the MLLR technique
with respect to the number of EM iterations and the quality of
the new convergence criterion.
Index Terms: speaker adaptation, speech recognition

1. Introduction
We can find Automatic Speech Recognition (ASR) systems all
around the world. Current state-of-the-art ASR systems are
based on Hidden Markov Models (HMM) to model the acoustic
knowledge and n-grams to model the syntactical knowledge [1].
A robust ASR system needs to perform well in different envi-
ronments and with different speakers. However, many speech
recognition systems are for personal use, as only one speaker
does usually use them (e.g., in a mobile phone or in a car). Con-
sequently, it is interesting to guarantee an optimal performance
for a particular speaker of an ASR system initially designed for
multiple speakers. For this reason, speaker adaptation has be-
come an essential part of a state-of-the-art ASR system.

An initial speaker-independent system can be adapted by
using the Maximum Likelihood Linear Regression (MLLR)
technique [2]. MLLR computes a set of transformations that
reduces the mismatch between the initial model set and the
adaptation data. These transformations are obtained by solving
an optimisation problem using the Expectation-Maximisation
(EM) technique [3]. The EM algorithm is used for finding max-
imum likelihood estimates of parameters in probabilistic mod-
els, where the model depends on unobserved latent variables.

In the MLLR technique every iteration of the EM process
provides a complete set of transformations that can be used to
adapt the model. However, the MLLR technique has commonly
been used with only one iteration of adaptation [2]. Some works
study the performance of the adaptation with only the first iter-
ations of the EM algorithm [4, 5, 6].

In this work we study the performance of the adaptation
with respect to the number of iterations of the EM algorithm,
from the first iteration to the convergence of the EM process.
Since in each iteration the transformation matrix is closer to the

identity matrix (because models are closer to adaptation data),
we define a new stop criterion based on the distance of the trans-
formation matrix to the identity matrix. Determining the con-
tributions of the different matrices computed in the EM process
can be used to verify whether the main contribution is given by
the matrix of the first iteration. To determine these contributions
we present a way to compute a general transformation matrix.
We present experimental results on 8 speakers from the Wall
Street Journal corpus to study this influence.

2. The MLLR adaptation technique
The aim of speaker adaptation techniques is to obtain a speaker-
dependent recognition system by using a combination of gen-
eral speech knowledge from well-trained HMM and speaker-
specific information from a new speaker’s data.

MLLR is a technique to adapt a set of speaker-independent
acoustic models to a speaker by using small amounts of adap-
tation material. The MLLR approach requires an initial inde-
pendent continuous density HMM system. MLLR adapts the
acoustic models and updates the model mean parameters to
maximise the likelihood of the adaptation data by using a trans-
formation matrix, which is estimated from the adaptation data.

The theory is based on the concept of regression classes.
A regression class is a set of mixture components that share
the same transformation matrix~W . This matrix is applied to
the extended mean vector of all the mixtures pertaining to the
regression class to obtain an adapted mean vector. Given a state
q in a HMM, for theith gaussian of its output distribution, we
denote its mean vector as~µqi. The adapted mean vector~̂µqi is
obtained by:

~̂µqi =
~W · ~ξqi

where ~̂µqi is the adapted mean and~ξqi is the extended mean

vector defined as~ξqi = [w, µ1

qi, . . . , µ
n
qi]

′ = [w : ~µqi], where
n is the number of features,~µqi is the original mean vector and
w is an offset term.

If we have a set of adaptation data denoted by the sequence
of acoustic feature vectors~X = ~x1~x2...~xT , ~xt ∈ R

D, t =

1, ..., T , we can estimate the transformation matrix̂~W using
the maximum likelihood approach as:

~̂W = max
~W

p
~̂λ
( ~X)

where~̂λ defines the parameters of the adapted model.
The problem is solved by using the EM algorithm [3]. EM

is an iterative method which alternates between performing:
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1. An expectation (E) step: which computes an expectation
of the log likelihood with respect to the current estimate
of the distribution for the latent variables.

2. A maximization (M) step: which computes the parame-
ters which maximise the expected log likelihood found
on the E step. These parameters are used to determine
the distribution of the latent variables in the next E step.

The main idea is to define an auxiliary functionQ(~λ, ~̂λ)

in the step E as:Q(~λ, ~̂λ) =
∑

~θ∈~Θ
p~λ(

~X, ~θ) · log(p
~̂λ
( ~X, ~θ))

where~θ is a state sequence and~Θ is the set of all possible state
sequences with lengthT . The auxiliary function depends on

both the initial model~λ and the adapted model~̂λ. Using this
definition it can be shown that by successively defining a new

model~̂λ which maximisesQ (in the step M), the auxiliary func-
tion has the property that the value ofp

~̂λ
( ~X) will not decrease,

which was the original objective. The auxiliary function is max-
imised in the standard way by differentiating and equating to
zero. The solution of this equation is the set of transformation

matrices~W , that are applied on~λ to obtain~̂λ. Therefore, it is
necessary to compute a transformation matrix for every iteration
of the EM algorithm until the algorithm converges. Our conver-
gence criterion is based on the difference between the values of
Q in the current and the previous iteration. We assume conver-
gence when this difference is0 (for the used numeric precision).

To compute the transformation matrix (M step), we can use
several variants. Details on the estimation of these variants can
be consulted in [2]. In our case, we suppose different covari-
ances for each distribution and full adaptation matrices.

3. MLLR issues
One important problem in MLLR is the large number of itera-
tions required for the EM convergence with a full transforma-
tion matrix. We know that in each iteration the transformation
matrix is closer to the identity matrix because models are closer
to adaptation data. If a transformation matrix is not closer to
the identity matrix that the matrix of the previous iteration it is
possible that models are overfitted. With this idea, we propose
a new method to stop the EM estimation: in each iteration, we
calculate the distance between the transformation matrix and
the identity matrix using the Euclidean Distance Matrix [7]:

δ( ~W, ~I) = || ~W − ~I||

When this distance is higher than the distance obtained with the
matrix of the previous iteration we stop the adaptation. Since
the adaptation of the models depends directly on the transfor-
mation matrix, this seems a good criterion to evaluate when is
worth applying the transformation matrix. Therefore, we use
this idea as a new method to stop the estimation. With this
option, we reduce the computing time to obtain good adapted
models.

Since we want to study the performance of the adaptation
with respect to the number of iterations of the EM algorithm,
we need to determine the contribution of all adaptation matrices
obtained in the EM process. We can define that the transfor-
mations define a path in the representation space between the
initial and final models, and this path covers a certain distance.
Therefore, to determine the contribution of each EM step, the
idea is to determine how much distance is covered in each iter-
ation. To determine the contribution of a sequence of EM steps
we present a way to compute a general transformation matrix

that reflects the whole effect of the EM steps (i.e., we calcu-
late a general matrix that applied to the initial models allows to
obtain the adapted model in any iteration).

The calculation of a general matrix was not defined pre-
viously, as far as we know. This matrix can not be calcu-
lated as the product of the different matrices obtained in the
EM process (because dimensions do not match). We have ob-
tained a way to compute a general matrix to obtain the adapted
models from the initial models. The method solves a linear
equation system where the unknown variables are the matrix
coefficients. These coefficients are calculated using onlyn

means (wheren is the number of rows of~W ) to be trans-
formed from the initial model to the adapted model. For ex-
ample, for n = 2, if we have the original means~ε1 =
[w ε11 ε12], ~ε2 = [w ε21 ε22] and the corresponding adapted
means~µ1 = [µ11 µ12], ~µ2 = [µ21 µ22], the coefficients of
~W = [w10 w11 w12;w20 w21 w22] are obtained by solving:

w ε11 ε12 0 0 0
0 0 0 w ε11 ε12
w ε21 ε22 0 0 0
0 0 0 w ε21 ε22



w10

w11

w12

w20

w21

w22

 =

µ11

µ12

µ21

µ22


wherewij are the unknown variables.

Using the definition of the general matrix, we compute the
distance covered by the whole transformation process as the dis-
tance between the general matrix of the models obtained in the
convergence (~Wc) and the identity matrix. The contribution of
each step is calculated as the projection on this path, using the
distance between the general matrix of stepi ( ~Wi) and ~Wc and
~I to define the projection.

Furthermore, with the use of the general matrix it is not nec-
essary to keep the models of each iteration (since these models
can be obtained by applying the general transformation matrix
on the original models), with the consequent space saving.

4. Corpus
The experiments were performed using the Wall Street Journal
(WSJ) database [8]. The ARPA WSJ corpus consists of sam-
ples of read texts drawn from WSJ publications recorded under
high-quality conditions. We have used the Nov’92 (WSJ0) and
Nov’93 (WSJ1) training data.

The initial HMMs have been trained with HTK [9] using
just the WSJ0 training database composed of84 speakers with
a duration of15 hours. The HMMs are word-internal triphones
and gender independent. They are composed of2.3k tied-states
and the topology is left-to-right with loops. The number of
gaussians per state is16. We have also trained silence and inter-
word silence models.

For adaptation experiments, we have used a set of eight
speakers selected from the WSJ1 (Nov’93) training material1 .
We have only one regression class (a global transformation ma-
trix). There are about 150 utterances available for each speaker.
50 sentences were used for adaptation and the remaining were
used for testing. As language model, we used the standard20k
trigram grammar.

5. Experiments and Results
To analyze the results, we used the Word Error Rate (WER) as
the evaluation measure. This measure computes the edit dis-

1Notice that this subcorpus is not the usual WSJ benchmark and
baseline results might not be comparable with other works.
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Figure 1: Comparison among full adaptation matrices with a different number of EM iterations for each speaker. B is baseline result. F
is the result for the first iteration. C is the result for the matrix convergence. L is the result for the last iteration.

tance between a reference sentece and the recognized sentence.
We performed some experiments with the MLLR technique

to determine its behavior with respect to the number of EM iter-
ations. These experiments included a comparison between the
recognition results obtained when applying the different trans-
formations obtained in each EM iteration (from first iteration
till convergence and the new convergence criterion). Recogni-
tion was carried out with the iATROS recogniser [10].

In Figure 1 we can see the results for each speaker with
confidence intervals that show whether the differences among
the results are statistically significant [11]. Every graphic shows
four results:

• Baseline: It is the WER obtained when using the models
without adaptation.

• First iteration: It is the WER obtained when using an
adapted model with only one iteration of the EM algo-
rithm.

• Matrix convergence: It is the WER obtained with an
adapted model with the matrix convergence that we de-
fined with the distance between the transformation ma-
trix and the identity matrix.

• Last iteration: It is the WER obtained with a model
adapted with the transformations obtained in the EM
convergence.

According to these results, we can distinguish two groups
of speakers:

• 46h, 47b, 47n, 4am: these speakers have a bad WER
(above 30) when they use models without adaptation.
These speakers have a better statistically significant
WER when they use adapted models (47b has a statis-
tically significant WER only for the matrix convergence
or last iteration).

• 47h, 48r, 48v, 49n: these speakers have a better WER
(below 20) when they use models without adaptation.
In these speakers it is not necessary to adapt the origi-
nal models because the adaptation does not improve the
recognition results (the differences among the results are
not statistically significant). With these speakers we can
not draw conclusions.

In Figure 2 we show the results that we obtain if we calcu-
late the mean of all speakers. The results are better than baseline
because confidence intervals show that the differences among
the results are statistically significant. Although the results when
using EM till convergence (with matrix or EM convergence cri-
teria) are not significantly improved with respect to the results
of the first iteration, absolute results are slightly improved and
show that it could be convenient to use more than one EM it-
eration. The matrix convergence is a good option because the
number of iterations is quite lower than in the EM convergence
(for example, the speaker 46h has 606 iterations with the EM
convergence and 19 iterations with the matrix convergence) but
results are very similar and overfitting is possibly avoided.
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Figure 2: Mean WER for all the 8 speakers. B, F, C, and L have
the same meaning than in Figure 1.

With respect to the contributions of each EM step to the
adaptation, in Figure 3 we show the calculated projections for
the general matrices obtained in each EM step for speaker 46h.
We can see that the first distance is the highest distance of all
distances. Therefore, we think that the matrix of the first itera-
tion is the matrix that produces a more important transformation
in the data and it is the matrix with a greater contribution in the
adaptation process. Since the distance decreases in every iter-
ation, the contribution is lower and the first iterations are the
most important in the adaptation process.

6. Conclusions and Future Work
The results show that MLLR speaker adaptation significantly
improves the performance in speakers with bad performance
with speaker independent acoustic models. The results show
that there is no significant improvement between using only
one EM iteration or more iterations in the recognition perfor-
mance. We presented a new EM convergence criterion that
obtains adapted models with similar performance to those ob-
tained with the usual EM stop criterion and that are possibly not
overfitted. Moreover, the number of iterations of EM is lower
when using this new criterion. Therefore, we reduced the time
of computation.

We studied the contribution of the adaptation matrices to
confirm that the transformation matrix of the first iteration is
that which produces the major contribution. We demonstrated
it with an empirical method, using the recognition results and
the distance between matrices. To perform this analisys we
provided a method to calculate a general matrix that computes
the adapted models from initial models. Furthermore, with the
general transformation matrix we reduce the memory to apply
adaptation, since only the initial models and a transformation
matrix are needed to obtain the adapted models.

Future work is directed towards using more regression
classes and automatic building of regression classes. Moreover,
other convergence criteria can be defined and experiments can
be performed with other corpora to confirm these conclusions.
The use of MLLR on handwritten text recognition in another
interesting work.
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