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Abstract
This paper briefly describes the dot-scoring speaker recogni-
tion system developed by the Software Technology Working
Group (http://gtts.ehu.es) at the University of the Basque Coun-
try (EHU), for the NIST 2010 Speaker Recognition Evaluation.
The system does eigenchannel compensation in the sufficient
statistics space and scoring is performed by a simple dot prod-
uct. An optimized Matlab implementation of of the eigenchan-
nels estimation, the channel compensation and the normalized
mean vector computation is provided.
Index Terms: Speaker Recognition, NIST SRE, Dot Scoring,
Sufficient Statistics, Eigenchannel Compensation, Matlab

1. Introduction
This paper briefly describes the dot-scoring speaker recogni-
tion system developed by the Software Technology Working
Group (http://gtts.ehu.es) at the University of the Basque Coun-
try (EHU), for the NIST 2010 Speaker Recognition Evaluation
(SRE). This system was built following the SUNSDV system
description for SRE08 [1]. The system combines two key tech-
nologies: sufficient statistics space eigenchannel compensation
and dot scoring.

The rest of the paper is organized as follows. Sufficient
statistics equations are described in Section 2. Eigenchannel
compensation is discussed in Section 3. The linear scoring tech-
nique is introduced in section 4. The experimental setup is out-
lined in Section 5, including details about the partitioning of
previous SRE databases, feature extraction (front-end) and con-
figuration of the eigenchannel computation. Section 6 presents
the results of the dot-scoring system in the SRE2010 evaluation.
Finally, conclusions are summarized in Section 7.

2. Sufficient statistics
LetN

(
ω, µubm,Σ

)
be a Gaussian Mixture Model (GMM) rep-

resenting the Universal Background Model (UBM), consisting
of K mixture components of dimension F and diagonal covari-
ance matrix Σ. Let f (t) be the feature vector at time t. Let
γk (t) be the posterior probability of mixture k at time t. Let Σk
be the covariance matrix of mixture k. Let repmat (M, i, j) be
the function that replicates the matrix M i × j times, and let
vec (M) be the function that concatenates all the columns of
matrix M in a single vector. We define:
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nk =
∑
t

γk (t) (1)

n = vec (repmat ([n1 n2 . . . nK ] , F, 1)) (2)

xk =
∑
t

γk (t) Σ
− 1

2
k

(
f (t)− µubmk

)
(3)

x = vec
(
[x1, x2, . . . , xK ]t

)
(4)

Vectors n and x (of size F×K) are the so called zero-order
and first-order sufficient statistics, respectively. Once the suffi-
cient statistics are obtained, there is no need to use the UBM
again, and therefore all the code is independent of the UBM.
For example, the popular one-iteration relevance-MAP adapted
and normalized mean vectorm =

µmap−µUBM

σ
is obtained by:

m = (τI + diag (n))−1 · x (5)

where τ is the relevance factor and diag (v) is a function that
returns a diagonal matrix with values from vector v on the di-
agonal.

3. Eigenchannel compensation
Channel compensation in the space of sufficient statistics is per-
formed using the eigenchannel recipe developed by the Brno
University of Technology Speech Group [2]. The first order
sufficient statistics are compensated as follows:

x̂ = x− diag (n) ·WL−1W tx (6)
where W is the so called eigenchannel matrix, and matrix L is
given by:

L = I +W tdiag (n)W = I +

K∑
k=1

nkOk (7)

where Ok = W t
kWk. Channel compensation on the adapted

and normalized mean vector m is performed using equation 5:

m̂ = (τI + diag (n))−1 · x̂ (8)

3.1. Estimation of the eigenchannel matrix

Given a data matrix M = [m1, . . . ,mJ ] composed by adapted
and normalized mean vectors, the eigenchannel matrix W con-
sists of the D most significant eigenvectors of the data covari-
ance, each eigenvector v weighted by the square roots of the
corresponding eigenvalues λ:

W =
[
v1 ·
√
λ1 v2 ·

√
λ2 . . . vD ·

√
λD
]

(9)
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Since the matrix M includes, among other sources of vari-
ability, speaker variability (which we would not like to com-
pensate), the average speaker model must be subtracted from
all sessions of a speaker prior to eigenchannel computation.

It is possible to obtain different eigenvectors from different
types of channel variabilities (for example telephone-telephone,
microphone-microphone and telephone-microphone variabili-
ties), and then stack all of them in a single matrix. That is:

W = [Wtel Wmic Wtel−mic] (10)

Note that the data covariance matrix 1/JMM t has dimens-
sions FK × FK (F being around 40 and K around 1024),
being unfeasible the direct computation of the eigenvectors. A
possible solution is to compute the eigenvectors V of matrix
1/JM tM (sized J × J) and then project them by W = MV .

3.2. Matlab implementation of eigenchannel compensation

Some comments must be done about the Matlab implemen-
tation. Once the eigenchannel matrix W has been obtained,
the compensated first order statistics, x̂, can be computed from
(n,x), the non-compensated zero and first order statistics, but
note that the calculation of matrix L can be accelerated if prod-
ucts Ok =

{
W t
k ·Wk

}
are precomputed. Note also that being

L positive definite, L−1
(
W tx

)
can be solved by Cholesky de-

composition. Finally, note that we are only interested in the D
largest eigenvectors, which can be efficiently found using the
Matlab eigs function (instead of the full eig version).

Listings 1, 2 and 3 show the Matlab implementations of
the eigenchannels estimation, the channel compensation and the
normalized mean vector computation, respectively.

4. Linear Scoring
Linear scoring (dot-scoring) makes use of a linearized proce-
dure to score test segments against target models [1]. Given a
feature stream f (the target signal) and a speaker spk, the first-
order Taylor-series approximation to the GMM log-likelihood
is:

logP (f |spk) ≈ logP (f |UBM) +mt
spk · ∇P (f |UBM)

(11)
wheremspk denotes the normalized mean vector of speaker spk
and ∇ denotes the gradient vector w.r.t the standard-deviation-
normalized means of the UBM, and∇P (f |UBM) = xf is the
first order statistics vector of target signal f . The log-likelihood-
ratio between the target model and the UBM is used for scoring,
as follows:

score (f, spk) = log
P (f |spk)

P (f |UBM)
≈ mt

spk · xf (12)

When channel compensation is applied, both the normal-
ized mean vector of the speaker and the first order statistics
vector of the target signal are compensated:

ˆscore (f, spk) = m̂t
spk · x̂f (13)

The linear scoring is a very fast and effective method tha has
proved to be comparable to (and sometimes even better than)
Support Vector Machines (SVM) based scoring methods. In-
deed, SVMs require much more computation and an extra set
of impostor models.

Listing 1: Eigenchannel estimation function code in Matlab.
The functions parametres are M , the data matrix containing
normalized mean vectors as rows, K, the dimenssion os the
feature vectors, c, a vector containing numeric speaker labels
(identities) for each mean vector and D, the desired number of
eigenchannels. Output values are the eigenchanel matrixW and
the cell array O = {Ok}.

function [W,O] = EigChannEst(M,K,c,D)
F=size(M,1)/K;
J=size(M,2);
% Step 1 - Speaker compensation
for id=unique(c)

ii=find(c == id);
M(:,ii)=M(:,ii)-repmat(mean(M(:,ii),2)

,1,length(ii));
end
% Step 2 - Eigenchannel estimation
opts.issym=1;
opts.isreal=1;
opts.disp=0;
opts.tol=1E-3;
[eigVec,eigVal]=eigs(1/J*M’*M,D,’lm’,

opts);
V=eigVec*sqrt(eigVal);
W=M*V;
% Step 3 - Precompute O{k} matrices
for k=1:K

Wk=W(1+F*(k-1):F*k,:);
O{k}=Wk’*Wk;

end

5. Experimental setup
5.1. Partitioning of the previous SRE databases

To implement the dot-scoring speaker recognition system, the
following sets were defined and used:

1. Universal Background Models (UBM)

2. Channel Compensation (CHC)

3. Z-Norm score normalization (SN-ZNorm)

4. T-Norm score normalization (SN-TNorm)

5. Development set

In order to create these sets, SRE04 to SRE08 (including
FollowUp SRE08) were used. A study of the databases was
carried out to avoid including signals from the same speaker in
two different sets. Table 1 shows the speaker distribution in all
the databases. The main diagonal shows the number of speak-
ers per database, elements outside the diagonal representing the
number of common speakers in each pair of databases.

5.1.1. SRE04 to SRE06

We found 1416 different speakers in the SRE04-06 sets: 180 of
them (from SRE05 and SRE06) contained recordings with aux-
iliary microphones, whereas the remaining 1256 speakers were
recorded only through different kind of telephones. Each set
of speakers (either containing or not containing mic recordings)
was divided into 4 different subsets (UBM, CHC and SN), and
SN speakers were further divided into 2 additional sets (ZNorm
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Listing 2: Channel compensation function code in Matlab. The
functions parametres are vectors n and x, the zero and first or-
der sufficient statistics of the target signal, and matrices W and
O, as returner by the eigenchannel estimation function. Output
value is vector y, the channel compensated first-order sufficient
statistics vector.

function y = ChannelComp(n,x,W,O)
K=length(O);
L=eye(size(W,2));
for i=1:K

L=L+n(i)*O{i};
end
y=x-n.*(W*(L\(W’*x)));

Listing 3: Normalized means function code in Matlab. The
functions parametres are vectors n and x, the zero and first or-
der sufficient statistics of the target signal, and tau, the rele-
vance factor for MAP adaptation. Output value is vector m,
adapted and normalized mean vector. Note that if x is channel
compensated, them m is channel compensated too.

function m = NormalizedMeans(n,x,tau)
m=x./(tau+n);

and TNorm). Those speakers with the greatest number of sig-
nals acquired under different conditions where preferably as-
signed to the CHC set, whereas the remaining speakers were
randomly distributed among the three other subsets. Table 2
shows the number of signals for the defined subsets.

5.1.2. SRE08

Unlike previous competitions, SRE08 included in the training
and test conditions, for the core test, not only conversational
telephone speech data but also conversational telephone speech
recorded through microphone channels in an interview scenario.
150 speakers were recorded in this new condition.

The full SRE08 database was used as development set. To
avoid interactions with previous databases, the signals of the
112 speakers in common with SRE06 (see Table 1) were not
used. The signals of the remaining 1224 speakers, both in train
and test, were divided into two well-balanced sets for develop-
ment.

Table 1: Number of speakers per database (main diagonal) and
and number of common speakers in each pair of databases (ele-
ments outside the diagonal).

SRE04 SRE05 SRE06 SRE08 FU08
SRE04 310 0 0 0 0
SRE05 0 525 348 0 0
SRE06 0 348 949 112 0
SRE08 0 0 112 1336 150
FU08 0 0 0 150 150

Table 2: Number of signals from SRE04 to SRE06 in the
Universal Background Models (UBM), Channel Compensation
(CHC) and Score Normalization (ZNorm and TNorm) subsets.

female male Total
UBM 2804 2119 4923
CHC 4586 3531 8117

TNorm 1479 960 2439
ZNorm 1403 1146 2549

Table 3: Distribution of signals in SRE08 into two balanced sets
for development (devA and devB).

SRE08 SRE08_reduced devA devB
train 3263 3149 1621 1528
test 6377 6211 3306 2905

5.1.3. FollowUp SRE08

The FollowUp SRE08 evaluation focused on speaker detection
in the context of conversational interview speech. Test seg-
ments involved the same interview target speakers and inter-
view sessions used in the SRE08 evaluation. Some involved the
same microphone channels used in SRE08, whereas others were
recorded through microphones not used previously.

The FollowUp SRE208 set, consisting of 6288 audio sig-
nals, was divided into two balanced subsets: CHC and SN, and
the SN subset was further divided into two subsets: ZNorm and
TNorm (see Table 4).

5.2. Preprocessing and Feature Extraction

The Qualcomm-ICSI-OGI (QIO)[3] noise reduction technique
(based on Wiener filtering) was independently applied to the
audio streams. The full audio stream was taken as input to es-
timate noise characteristics, thus avoiding the use of voice ac-
tivity detectors on which most systems rely to constrain noise
estimation to non-voice fragments.

Features were obtained with the Sautrela toolkit [4]. Mel-
Frequency Cepstral Coefficients (MFCC) were used as acoustic
features, computed in frames of 25 ms at intervals of 10 ms. The
MFCC set comprised 13 coefficients, including the zero (en-
ergy) coefficient. Cepstral Mean Subtraction (CMS), RASTA
and Feature Warping were applied to cepstral coefficients. Fi-
nally, the feature vector was augmented with dynamic coeffi-
cients (13 first-order and 13 second-order deltas), resulting in a
39-dimensional feature vector.

Table 4: Distribution of speakers and signals in FollowUp
SRE08 database.

Signals
Speakers female male Total

CHC 38 *2 2432 1776 4208
TNorm 18 * 2 1145 848 1993
ZNorm 19 *2 1212 875 2087
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5.3. System configuration

Two gender dependent UBMs consisting of 1024 mixture com-
ponents were trained with the Sautrela toolkit, using binary
spliting, ortphan mixture discarting and variance flooring.

Channel compensation was trained for telephone-
telephone, microphone-microphone and telephone-microphone
variabilities, using 20, 20 and 40 eigenchannels, respectively.

Trials were conditioned on three channel types: no micro-
phone sessions (0MIC), one microphone session (1MIC) and
two microphone sessions (2MIC). Gender dependent and chan-
nel type condition dependent ZT normalization was performed
on trial scores.

Side-info-conditional calibration was performed with Fo-
Cal [5], using channel type and gender conditioning. Scores
were calibrated to be interpreted as detection log-likelihood-
ratios, and the hard accept/reject decisions were made by ap-
plying a Bayes threshold of 6,907 (derived from the SRE2010
competition costs, Ptarget = 0.001, Cmiss = 1 and Cfa = 1).

6. Evaluation results
The year 2010 speaker recognition evaluation was part of an on-
going series of evaluations conducted by NIST. The core train
and test conditions involved telephone conversational excerpts
(of approximately five minutes total duration) and microphone
recorded conversational segment (of three to fifteen minutes to-
tal duration), with 5460 train segments, 13344 test segments and
a total of 610748 trials.

Five main conditions1 were carried out in the core SRE2010
evaluation, according to train and test recording conditions mis-
match:
1 - Interview in train and test, same mic.
2 - Interview in train and test, different mic.
3 - Interview in train and phonecall over tel channel in test.
4 - Interview in train and phonecall over mic channel in test.
5 - Phonecall in train and test, different telephone.

Figure 1 shows the DET curves for the dot-scoring system
in the five core conditions. Minimum and actual cost opera-
tion points are marked with circles and asterisks, respectively.
Whenever the test segment is related to microphone signals
(conditions 1, 2 and 4), the DET curves show a calibration er-
ror (big distance between minimum and actual cost points). On
the other hand, when the test is carried out over the telephon
channel, the calibration is really good. A mismatch bewteen the
designed development set and the evaluation set could explain
this calibration issue.

7. Conclusions
The dot-scoring speaker recognition system developed by the
Software Technology Working Group (http://gtts.ehu.es) at the
University of the Basque Country (EHU), for the NIST 2010
Speaker Recognition Evaluation has been described. The sys-
tem combines two key technologies: sufficient statistics space
eigenchannel compensation and dot scoring. An optimized
Matlab implementation of of the eigenchannels estimation, the
channel compensation and the normalized mean vector compu-
tation has been provided.

The dot-scoring system attained competitive results at the
NIST SRE 2010, despite being a much simpler approach com-
pared to other methodologies. On the other hand, the calibration

1Another four conditions related to different vocal efforts were also
evaluated, but they will be ignored in the current work.
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Figure 1: DET curves for the dot-scoring system in the five
core conditions. DET curves are ordered in descending Equal
Error Rate (ERR), the second condition (interviews with differ-
ent mic) being the worst and the first one (interviews with same
mic) being the best. Minimum cost operation point are marked
with circles, and actual operation points with asterisks.

errors with microphone test segments suggest a mismatch bew-
teen the designed development set and the evaluation set.

8. References
[1] A. Strasheim and N. Brümmer, “SUNSDV system descrip-

tion: NIST SRE 2008,” in NIST Speaker Recognition Eval-
uation Workshop Booklet, 2008.

[2] L. Burget, P. Matejka, P. Schwarz, O. Glembek, and J. Cer-
nocký, “Analysis of feature extraction and channel compen-
sation in gmm speaker recognition system,” IEEE Transac-
tions on Audio, Speech, and Language Processing, vol. 15,
no. 7, pp. 1979–1986, 2007.

[3] A. Adami, L. Burget, S. Dupont, H. Garudadri, F. Grezl,
H. Hermansky, P. Jain, S. Kajarekar, N. Morgan, and
S. Sivadas, “Qualcomm-ICSI-OGI features for ASR,” in
Proceedings of ICSLP2002, 2002.

[4] M. Penagarikano and G. Bordel, “Sautrela: A Highly Mod-
ular Open Source Speech Recognition Framework,” in Pro-
ceedings of the ASRU Workshop, (San Juan, Puerto Rico),
pp. 386–391, December 2005.

[5] Tools for detector fusion and cali-
bration, with use of side-information.
http://sites.google.com/site/nikobrummer/focalbilinear.

FALA 2010 - VI Jornadas en Tecnología del Habla and II Iberian SLTech Workshop

-138-




