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Abstract
In this paper, a novel approach for speaker identification called
Fishervoice is proposed. It was inspired by the two-dimensional
(2D) Fisherface technique, which is a method that combines
a two-stage “PCA+LDA” strategy and two-dimensional dis-
crimination techniques. Experimental results on the BANCA
database demonstrate that the Fishervoice approach is effective
for speaker identification tasks, in particular when there are mis-
matched conditions. The reduction on the number of parameters
needed to describe each speaker model achieved with the Fish-
ervoice technique is remarkable, thereby causing a reduction of
computational and memory costs.
Index Terms: fishervoices, speaker identification, dimension-
ality reduction

1. Introduction
Despite the great advances made recently in the field of speaker
recognition systems, they still lack robustness, i.e. their perfor-
mance degrades dramatically when the acoustic training data
differs from the given test conditions. Robustness is currently
the major challenge in speaker recognition for real-world ap-
plications [1]. For example, in telephone services, users may
call in under all kinds of acoustic environments (in the office,
on the street, in the car) and use different telephone networks
(land-line or cellular). Therefore, mismatched conditions may
be found at any time, which makes robustness one of the critical
factors that decide the success of speaker recognition technol-
ogy in these applications.

Most of the state-of-art speaker recognition systems use
Gaussian mixture models (GMM) as statistical models to repre-
sent the speakers in terms of the probability distribution of low-
level acoustic features. These systems achieve very high ac-
curacies on high-quality data when training and test conditions
are well controlled, but their performance is significantly de-
graded under adverse and mismatched conditions. Nowadays,
an interesting area of research is the use of discriminant analysis
techniques in speaker recognition [2], in order to reduce intra-
speaker and channel variability. In this way, speaker recognition
techniques based on speaker subspace modeling have been pro-
posed, such as the “eigenvoice approach” [3][4], and more re-
cently kernel learning methods are arising a great interest. The
work presented in this paper is inspired by the work described
in [5] on face recognition.

Given the similarities between the study of faces and voices,
the Fishervoice method (analogous to the Fisherface method) is
presented in this paper, which takes a two-stage “PCA+LDA”
strategy. It first uses two-dimensional Principal Component
Analysis (PCA) to reduce the dimensionality, and then performs
Linear Discriminant Analysis (LDA) to extract a discriminative
subspace. Thus, in this paper a research to analyze the robust-
ness and effectiveness of this dimensionality reduction and sub-

Figure 1:Fishervoice SID system

space learning technique is performed, to find out if this tech-
nique used in face recognition tasks to minimize the computa-
tional cost and alleviate the curse of dimensionality can also be
helpful in speaker identification (SID) tasks.

The outline of the paper is as follows. In Section 2, the Fish-
ervoice method and the speaker identification algorithm are pre-
sented. In Section 3 the experimental framework is described.
In Section 4 experimental results are presented. Finally Section
5 explains the conclusions of the paper.

2. Proposed SID System
The algorithm proposed in this paper to perform speaker iden-
tification is very simple, as shown in Fig. 1. There are two data
inputs: a train dataset, used to model the speakers in the system,
and a test dataset, where each of its elements has to be assigned
to a speaker model. To perform this assignment, a classifier
is used to decide which speaker segment of the train dataset is
more similar to a given speech segmentS from the test dataset,
thus deciding that the speaker ofS is the one that spoke the
speech segment in the model that is more similar toS.

It can be seen in figure 1 that a dimensionality reduction
step is performed before the classification step. It is at this
point when the Fishervoice approach that is proposed in this
paper is applied. If this step is skipped, the SID system will
be equivalent to a GMM identification system, where a speaker
segment is modeled by a GMM and GMMs are compared. This
GMM identification system will be used as a baseline to make
a comparison between its performance and the performance of
the Fishervoice identification system.

2.1. The datasets

Two datasets are needed to perform speaker identification:

• A train dataset (Atrain) composed by segments of
speech spoken by different known speakers. This data
is used to model the target speakers.

• A test dataset (Atest) composed by segments of speech
that have to be assigned to the most likely speaker in the
train set.
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Atrain and Atest are tridimensional matrices of dimension
m × n × Ltrain andm × n × Ltest, respectively.Ltrain is
the number of speech segments in matrixAtrain, i.e. it is the
number of speaker segments that are available to model the dif-
ferent speakers. Consequently,Atest is the number of speaker
segments that have to be assigned to a speaker in the model.

Each segment in both sets will be represented by the means
of a Gaussian Mixture Model (GMM), where the number of
gaussians of the model ism and the dimension of the feature
space isn. To obtain this GMMs, a Maximum a Posteriori
(MAP) adaptation of a universal background model (GMM-
UBM) is performed with the available acoustic features. In this
work, the acoustic features are 12 Mel-frequency Cepstral Co-
efficients (MFCC), extracted using a 25ms Hamming window
at a rate of 10ms per frame, and augmented with the normalized
log-energy and their delta and acceleration coefficients. Thus,
the dimension of the feature space (n) used in this paper is 39.

2.2. Dimensionality reduction: the Fishervoice method

The dimensionality reduction strategy proposed in this paper
is based on an adaptation of the procedure presented in [5] for
face recognition in order to make it suitable for speaker recogni-
tion. In [6] a different, but also called, fishervoice approach has
been applied to a speaker clustering task, but in the fishervoice
approach described in this paper a two-stage “PCA+LDA” strat-
egy combined with a two-dimensional discrimination technique
is applied, while in [6] only LDA is used.

Consider a setAtrain representing speech segments as ex-
plained in 2.1. This dataset will be used to compute two trans-
formation matricesX andY as explained below.

The between-classDb, within-classDw and totalDt scatter
matrices are defined as:

Db =

c∑
i=1

Pi(Mi −M)T (Mi −M) (1)

Dw =

c∑
i=1

∑
j,j∈i

(Atrainj −Mi)
T (Atrainj −Mi) (2)

Dt = Db +Dw (3)

wherec is the number of different speakers inAtrain, Pi is the
a priori probability of theith class,Mi is the mean matrix of
the ith class (i = 1, 2, · · · , c), M is the total mean matrix of
Atrain, andAtrainj is them × n matrix of thejth segment
in Atrain. So, we can understandM as the mean voice of the
whole speaker set, andMi as the mean voice of speakeri.

After computing thesen×n matrices, the eigenvectors and
eigenvalues ofDt are computed, finding a matrixX that max-
imizesJ(X) = XTDtX. To reduce the dimensionality and
make the system less time and memory consuming, an auto-
matic strategy for dimensionality reduction is applied. The pro-
posed selection strategy keeps only a percentage of the energy
of the subspace (EX ):

EX =

n∑
i=1

λi (4)

whereλi is theith greatest eigenvalue ofX. In the end, matrix
X keeps a numberu of columns (eigenvectors) equal to the
number of eigenvalues needed to absorb a given percentagee1
of the energyEX . Hence,X is an× u matrix.

After obtainingX, the sample setAtrain is transformed
into a new space with a lower dimensionality by doing

Btrain = AtrainX. Then, new between-class and within-class
scatter matrices (Rb andRw, respectively) are computed:

Rb =

c∑
i=1

Pi(Li − L)(Li − L)T (5)

Rw =

c∑
i=1

∑
j,j∈i

(Btrainj − Li)(Btrainj − Li)
T (6)

whereL is the mean voice of the setBtrain, andLi is the mean
voice of theith speaker in that set.

Applying the Fisher criterion, a matrixY that maximizes

J(Y ) = Y TRbY

Y TRwY
is obtained. Again, an automatic strategy

for dimensionality reduction is applied as before, causingY to
become am×v matrix by keeping thee2% of the energy of the
subspaceEY .

Finally, performing the transformationCtrain =
Y TBtrain a new sample setCtrain composed byv × u

matrices is obtained. After this procedure, a new representation
of the datasetAtrain with lower dimensionality is obtained.

After computingX andY , the test data matrixAtest is
projected to this new low dimensionality subspace by doing:

Btest = AtestX (7)

Ctest = Y
T
Btest (8)

2.3. Classifier

After reducing the dimensionality of the datasets, two tridimen-
sional matricesCtrain andCtest of dimensionsv×u×Ltrain

andv × u× Ltest respectively are obtained. A transformation
to bi-dimensional matrices is performed, obtaining two matrices
C′

train andC′
test of dimensionsvu×Ltrain andvu×Ltest re-

spectively. This transformation consists on stacking the means
of the GMMs, i.e. concatenating the rows of each of theLtrain

(Ltest) matrices inCtrain (Ctest) to obtain a matrix of super-
mean vectors. This transformation is not really necessary, but
it makes the classification task easier, because now vectors are
compared instead of matrices.

To decide which of theLtrain speakers spoke one of the
segmentsS in the test set, the following expression is evaluated:

T = min
i

d(C′
testS

, C
′
traini

) (9)

whered(., .) is the euclidean distance between two vectors. The
speaker of the segmentT that minimizes the euclidean distance
to the segmentS is chosen as the speaker ofS. Experiments
were performed with different distance measures (for example,
Mahalanobis distance), but the best results were achieved with
the euclidean distance.

3. Experimental framework
3.1. Description of the database

The speaker identification system proposed in this paper was
tested using the BANCA database [7] [8]. This database in-
cludes 52 English speakers (26 males and 26 females) each of
whom recorded 12 sessions divided into 3 different scenarios:
controlled, degraded and adverse.

Each session was recorded using two different-quality mi-
crophones. In each session the speaker recorded two differ-
ent utterances, hence there are eight utterances per speaker in
each scenario. A partition of the data in three groups has to
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Table 1: Summary of the datasets used in the experiments.

Experiment GMM-UBM Train Test

G
T

1 All All All

M
at

ch
ed

1 Controlled Controlled Controlled
2 Degraded Degraded Degraded
3 Adverse Adverse Adverse
4 All Controlled Controlled
5 All Degraded Degraded
6 All Adverse Adverse

M
is

m
at

ch
ed

1 Cont./Deg. Controlled Degraded
2 Cont./Adv. Controlled Adverse
3 Degr./Cont. Degraded Controlled
4 Degr./Adv. Degraded Adverse
5 Adv./Cont. Adverse Controlled
6 Adv./Deg. Adverse Degraded
7 All Controlled Degraded
8 All Controlled Adverse
9 All Degraded Controlled
10 All Degraded Adverse
11 All Adverse Controlled
12 All Adverse Degraded

be done, in order to have different data for training the GMM-
UBM, computing the matricesX andY and testing. The eight
utterances per speaker are divided as follows: two are used to
train the GMM-UBM, three to train the matrices, and three are
used for testing.

Three different groups of experiments are described in this
paper. The first group consists of only one experiment, and is
called Grand Test (GT) because of its similarity to the one with
the same name in [7]. This is an experiment that uses data from
all the scenarios both for training and for testing. The second
group are experiments in matched conditions, i.e. experiments
where the data used for training is from the same scenario as the
data used for testing. Finally, the third group are experiments in
mismatched conditions, where the data used for training is from
a different scenario as the data used for testing.

Table 1 describes the different datasets used for the exper-
iments. GT experiment is a global recognition test, using the
three different scenarios for training and testing. Experiments 1,
2 and 3 in matched conditions are scenario-based, i.e. training
and testing are performed using only data from a given scenario.
Experiments 4, 5 and 6 in matched conditions use a scenario-
independent GMM-UBM (trained with data from the three sce-
narios), but matricesX andY are obtained using data from the
same scenario as the Test set.

In the experiments in mismatched conditions, Train comes
from scenarioi, while Test comes from scenarioj, wherei 6= j.
Note that there are two different GMM-UBM sets, separated
by a slash (/), i.e.Ti/Tj . This means thatTi is the GMM-
UBM used in Train, andTj is the GMM-UBM used in Test.
This means that Train and Test use a GMM-UBM trained with
data that belongs to their respective scenarios. GMM-UBMs
of 16, 32, 64 and 128 gaussians are going to be used in the
experiments. The number of gaussians in the GMM-UBM will
be referred to asM .

4. Results
4.1. Baseline

Table 2 shows the accuracies obtained by performing speaker
identification without using dimensionality reduction tech-
niques, i.e. comparing GMMs directly. The results obtained for

the GT and the experiments in matched conditions show that
the baseline achieves acceptable accuracies, but the error rate in
mismatched conditions is, in general, excessively high.

For each experiment, Table 2 also indicates which number
of gaussians obtained the highest accuracy (M ), choosing the
lowest one when the same result was obtained with different
GMMs. The dimensionality of the data is alwaysM × n.

Table 2: Baseline results.

Experiment Accuracy M

G
T

1 91.9872 128

M
at

ch
ed

1 96.1538 32
2 94.2308 64
3 94.2308 32
4 96.1538 64
5 94.8718 128
6 97.4359 64

M
is

m
at

ch
ed

1 10.2564 32
2 3.8462 32
3 13.4615 32
4 4.4872 32
5 5.1282 32
6 6.4103 32
7 94.2308 128
8 32.6923 128
9 88.4615 32
10 31.4103 64
11 33.3333 64
12 33.9744 64

4.2. Fishervoice approach

Figure 2 shows the accuracies obtained in the GT experiment,
using different values of the energy percentagese1 ande2, and
GMMs with 16, 32, 64 and 128 gaussians. The values in blue
are the lowest, and the ones in red are the highest. The aim is to
obtain the highest accuracy with the lowest dimensionality, and
in this case it is an accuracy of 99.0385%, with a subspace of
dimension33×39. Nevertheless, an accuracy of 98.7179% can
be reached with a subspace of dimension32× 9, which will be
computationally better.
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Figure 2:Results for experiment 1.

As one of the aims of this system is to obtain high accura-
cies with low dimensionality subspaces, the accuracies obtained
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usinge1 = 100% or e2 = 100% will be discarded. Table 3
shows the maximum accuracies achieved in the experiments in
Table 1 (using the best-quality microphone) and the lowest di-
mensionality subspaces that achieve them with a GMM-UBM
of M gaussians.

Table 3: Experimental results with the Fishervoice approach.

Experiment Accuracy Dimension e1 e2 M

G
T

1 98.7179 32× 9 90 80 64

M
at

ch
ed

1 100 5× 8 90 70 16
2 100 20× 6 80 60 64
3 99.359 37× 8 80 70 128
4 100 3× 9 90 30 32
5 100 10× 6 70 50 64
6 100 18× 10 90 50 128

M
is

m
at

ch
ed

1 28.2051 2× 9 90 10 64
2 9.6154 1× 6 70 10 64
3 39.7436 1× 5 60 10 16
4 10.2564 2× 9 90 20 32
5 30.7692 1× 9 90 10 32
6 31.4103 2× 5 60 20 32
7 100 15× 9 90 60 64
8 70.5128 15× 9 90 80 32
9 100 8× 9 90 60 32
10 74.359 22× 9 90 90 32
11 79.4872 21× 9 90 90 32
12 78.2051 11× 9 90 90 16

The error rate in the GT experiment, which is the most
general, is approximately 1.3%. Experiments in matched con-
ditions obtain an accuracy of 100% with the different GMM-
UBMs, except in experiment 3, which corresponds to a de-
graded scenario, where the error rate is about 0.7%. It can also
be appreciated in table 3 that the dimensionality of the subspace
needed to obtain these results is lower in experiments 4,5,6 than
in experiments 1,2,3.

In experiments 1 to 6 in mismatched conditions, where
Train and Test are adapted using the GMM-UBM correspond-
ing to their own scenario, the error rate is too high. Neverthe-
less, in experiments 7 to 12, where a global GMM-UBM was
used for the adaptation, higher accuracies are obtained, mainly
in experiments 7 and 9 where Train and Test belong to the least
degraded scenarios.

Comparing tables 3 and 2, it can be observed that the use of
the Fishervoice approach achieves higher accuracies in all the
experiments. Not only accuracies are higher, but lower dimen-
sionality of data is handled in all cases, making the Fishervoice
dimensionality reduction method effective for speaker identifi-
cation.

Figure 3 compares the results obtained in the experiments
using the two available microphones, where the green bars rep-
resent the results obtained with microphone 1, and the yellow
bars represent the results obtained with microphone 2. It can be
seen that, in general, better accuracies are obtained using micro-
phone 1, due to its better quality. Nevertheless, results obtained
with microphone 2 are acceptable in matched conditions.

5. Conclusions and Future Work
A PCA-LDA based speaker identification system is presented
in this paper with two goals: obtain a good performance even
in mismatched conditions, and reduce the dimensionality of the
data in order to reduce the computational load. Table 3 shows
that the speaker identification is almost perfect in matched con-
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Figure 3:Results with different microphones.

ditions, and acceptable in mismatched conditions. Moreover,
it outperforms the baseline, where no dimensionality reduction
techniques are applied, and reduces the dimensionality of the
data to be handled. It is also noticeable that the best accuracies
are obtained when the GMM-UBM employed is trained with
both clean and degraded data, thus helping the recognition sys-
tem to work with degraded samples. In addition, a substantial
reduction of the dimensionality is achieved, allowing the sys-
tem to be less time and memory consuming, as the vectors and
matrices that represent the speaker segments are smaller, and
the computing time for classification is reduced.

The main problem of this method is the selection of the
best values fore1, e2 andM , being necessary to perform some
research in the future to find an automatic manner to choose the
most suitable values for these parameters.

The GT experiment, which is the most interesting because it
does not matter the quality of the samples used for training and
testing, has an error rate of 1.3%, making this method useful for
real applications.

In future work, the validity of the Fishervoice method for
speaker verification will be tested, going into the method in
depth to improve it both in speaker identification and verifica-
tion.

6. References
[1] X.-H. Ren, Y.-F. Zhang, Y.-J. Xing, M. Li, ”Application of KPCA

and PNN for Robust Speaker Identification“, Proceedings of the
2008 Congress on Image and Signal Processing, vol. 4, pp. 533–
536, 2008.

[2] A. Errity and J. McKenna, ”A Comparative Study of Linear and
Nonlinear Dimensionality Reduction for Speaker Identification“,
Proc. of the15th International Conference on Digital Signal Pro-
cessing (DSP), pp. 587–590, Cardiff, Wales, 2007

[3] R. Kuhn, J.-C. Junqua, P. Nguyen and N. Niedzielski, ”Rapid
Speaker Adaptation in Eigenvoice Space“, IEEE Trans. Speech
and Audio Processing, vol. 8, n. 6, pp. 695–707, 2000

[4] O. Thyes, R. Kuhn, P. Nguyen and J.-C. Junqua, ”Speaker Iden-
tification and Verification Using Eigenvoices“, International con-
ference on Spoken Language Processing, pp. 242–245, Beijing,
China, October 2000.

[5] X.Y. Jing, H.S. Wong and D. Zhang, “Face Recognition Based on
2D Fisherface Approach”, Pattern Recognition, vol. 39, n. 4, pp.
707–710, 2006.

[6] S.M. Chu, H. Tang, T.S. Huang, ”Fishervoice and Semi-
supervised Speaker Clustering“, IEEE International Conference
on Acoustics, Speech and Signal Processing, pp. 4089–4092,Los
Alamitos, CA, USA, 2009

[7] E. Bailly-Baillire, S. Bengio, F. Bimbot, M. Hamouz, J. Mari-
ethoz, J. Matas, K. Messer, F. Poree, B. Ruiz, “The BANCA
Database and Evaluation Protocol”, 2003.

[8] The BANCA Database Website, Online:
http://www.ee.surrey.ac.uk/CVSSP/banca/

FALA 2010 - VI Jornadas en Tecnología del Habla and II Iberian SLTech Workshop

-142-




