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Abstract

This paper describes the system submitted by AT\ABAUWo
the 2010 edition of NIST Speaker Recognition Evadumat
(SRE). Instead of focusing on multiple, complex drehvy
systems, our submission is based on a fast, ligthtedficient
single system. Sample development results with iEmgl
SREO08 data (data used in the previous evaluati@®@8) are
0.53% EER (Equal Error Rate) in tel-tel (telephoatadused
for training and testing) male data (optimistic leadion),
going up to 3.5% (tel-tel) and 5.1% EER (tel-miglephone
data for training and microphone data for testirig)
pessimistic cross-validation experiments. Thesaili®sare
achieved with an extremely light system in compatel
resources, running 77 times faster than real time.

Index Terms. speaker recognition, speaker recognition
evaluation, factor analysis.

1. Introduction

Our group, ATVS-UAM, has been participating in NIST
(National Institute of Standards and Technologykedker
Recognition Evaluations (SRE) since 2001. In thesarsye
speaker recognition technology has evolved draailtjc
passing through different phases. During the fiestrs of this
period technology has been dominated by the Gaussia
Mixture Model — Universal Background Model (GMM-UBM)
technique [1]. This techniqgue was fast and accutaie
suffered great degradation with inter-session wdiig. For
this reason, it was constantly improved by new aehand in
general inter-session variability compensation s@sesuch as
Cepstral Mean Normalization (CMN), RASTA filtering [2]
Feature Warping [3], Feature Mapping [4], and so Simce
2003 and probably up to 2007 there was a geneddlized to
fuse GMM-UBM systems with what were known as ‘higher
level’ systems [5] because they operated on hidgnegls of
information of the speech signal (prosodic, phociita
lexical, dialogic, etc.) than the acoustic levekdisby the
GMM-UBM systems. These systems exploited information
that was not taken into account by GMM-UBM systeary]
therefore provided additional information that tert fuse
well with acoustic-based GMM-UBM systems. However,
higher-level systems tend to be computationallyeespre and
result in a multiplicity of systems that make corgtional
complexity of the overall systems very high and reve
prohibitive. Since 2005 [6,7] a new inter-session
compensation paradigm has appeared for the GMM-UBM
framework that has improved so much the performarfi¢kis
technology that has made it the mainstream agaiting
higher-level systems as an interesting option thuce a few
decimals in the scores of the NIST competition, &utot so
interesting option for real systems. This paradigmenerally
known as Joint Factor Analysis and consists in wgrkn a
high-dimensional feature space, the super-vectacespin
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which the feature vector is composed by the conegien of
the means of the GMM. Provided that we work withgtinal
covariance GMMs, with 1024 Gaussians and a speech
parameterization that provides a vector of 39 festuper
frame, the super-vector will include 1024 x 39 =936
dimensions. Once an utterance is transformed iechov in
this high-dimensional space, the Joint Factor Asialy
approach tries to determine low dimension sub-spat¢his
high-dimensional space that cover most of the is¢msion
variance and most of the inter-speaker varianceeeQhese
sub-spaces are indentified the speaker is idedtifigng the
information in the speaker variability sub-space.or#
recently a new approach called total-variability ffas been
proposed that does not try to disentangle speakerirzer-
session variability and rather finds a sub-spagpidally of
400 dimensions) that covers most of the variabi(iyth
speaker and inter-session) by means of Principal pooent
Analysis (PCA). The vectors in this sub-space arenth
compared, after compensation using Linear Discramin
Analysis (LDA) and Within-Class Covariance Normaliaat
(WCCN), with a simple cosine distance function, shaywi
better performance than the more complex Joint dfact
Analysis approach [6]. This is the approach thatwaee used
in our system for NIST SRE 2010. The rest of theepdp
organized as follows. Section 2 describes gives riaf b
overview of NIST SRE 2010, focusing in particulatle data
used for the evaluation. Section 3 describes featmtraction
with particular emphasis on the use of two voicévig
detectors, a point that we consider crucial for $hecess in
this evaluation. Then we describe the core of orstesn
(section 4). Finally, we describe the developmemnd a
evaluation results, including measures of companai
complexity (section 5) and conclude the paper atige 6.
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Figure 1. Developing (training) and testing phae o
ATVS-UAM NIST SRE 2010 System.
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Tablel. Development data composition for total spac
training. (#Utterances/#speakers).

Gender Tel-Tel Tel-Mic

Male T/LDA 5656/824 7868/452
WCCN 5230/611 7838/437

Female T/LDA 5155/889 10973/610
WCCN 4521/572 10900/607

2. Overview of NIST SRE 2010

A complete description of the NIST speaker recognit
evaluation is available in [9]. In general all thesvaluations
pose a speaker detection challenge in which thekspe
models are trained on training data provided by TN(&nd
previously unreleased) and, after training the kpeaodels,
these should be used to detect the speakers imdéstalso
provided by NIST and also previously unreleasede Th
participants must submit their results without kirgyvthe
speaker assignments and without hearing the autfiothis
paper we are only interested in one of the comustiche so
called core-core condition in which the trainingdasting
material was one two-channel telephone conversation
excerpt (we call this type of datd data), of approximately
five minutes total duration or a microphone recdrde
conversational segment (we call this type of daimdata) of
three to fifteen minutes total duration involvinghet
interviewee (target speaker) and an interviewehdth cases
with the target speaker channel designated. The ¢fpdata
was known in advance for the systems. The evaluatio
established a maximum of 6000 speaker models and a
maximum of 25000 test segments with a maximum &0DH
trials. The real evaluation was close to thoserégu

3. Audio Processing and Feature
Extraction

In our system, all audio except that used for eklttials (tel
data used for train and test) was first filteredhwthe QIO
(Qualcomm-ICSI-OGI) Wiener filter in order to reduceise
[10]. Feature extraction is performed after noiséuction. It
computes 38 coefficients per frame (19 Mel-Freqyenc
Cepstrum Coefficients, MFCC, and deltas) using 20 ms.
Hamming windows, overlapped 10 ms and 20 mel-spaced
(300-3300 Hz) magnitude filters. Once these featusee
calculated three channel compensation methodspgpiéed in
sequence: CMN, RASTA [2] and Feature Warping [3] v@ith
second windows.

Given that the data provided by NIST included speec
from conversations, there were long periods in thibe
target speaker was in silence. In order to avoimcgssing
those segments and achieve better performance weeusad

two different VAD (Voice Activity Detection) configrations
depending on whether the datanic or tel. tel audios are
segmented into speech and non-speech segmentsniognbi
an energy-based VAD developed by our group, andAB V
tool provided by Sound eXchange (SOX) [11] whictesus
speech enhancement and dynamic noise modellingy Onl
segments labelled as speech by both VADs are cenesido

be valid speech segments. Faic audios, we firstly remove
the interviewer speech from the audio. In orderdetect
interviewer activity segments to remove, two difer criteria
have been used. The first criterion is based oremergy
detector applied over the channel correspondingthie
interviewer’s microphone. Unfortunately for someardlings,
the dynamic range was not enough for detecting any
interviewer activity. In those cases, the energyedaactivity
labels were replaced by the ASR (Automatic Speech
Recognition) labels also provided by NIST (segmemisked

as silence was considered silence and segmentamjtivord
recognized as speech). After the interviewer speeels
removed a VAD scheme equivalent to the one apgtedel
data is used to detect valid speech segments.

4. Core Speaker Recognition

Figure 1 tries to represent the developing or ingirphase,
and the testing phase of ATVS-UAM system. Our sysie a
single system based on Gaussian Mixture Models (GMM
where a ‘Total Variability' modelling strategy [8jvas
employed in order to model both speaker and session
variability. The ‘total variability’ scheme shardbe same
principles as Joint Factor Analysis (JFA) systef)s7[, where
variability (speaker and session) is supposed twobstrained,
and therefore modelled, in a much lower dimensiapalce
than the GMM-supervector space. However, unlike ,J&BA
total space which jointly includes speaker and session
variability (represented by a low-rank T matrix)dsmputed
instead of computing two separate subspaces asFin
(matrices U and V). In our system we trained matriFigure
1) with the development data shown in Table 1. Alftaving
the vectors computed in the total variability spdeéined by
T, a session variability compensation stage is iagpby
means of Linear Discriminant Analysis (LDA), in whi we
train and use matrix A in Fig. 1, and Within-Classv@wance
Normalization (WCCN), in which we train and use maiwv
in Figure 1.

Instead of using a single total variability subspac
two gender dependent total subspaces of 200 dioensgiere
generated after applying LDA to a 400 (rank of ihensions
space calculated via classical eigenanalysis fraokdround
data (Table 1). Two differertbtal spaces were considered,
namely tel-tel (telephone only) and tel_mic. TheKkgmound,
employed to construct theotal spaces and the Universal
Background Model from which GMM-supervectors models
were derived (Table 1) contains a subset of da@ngang to

J

Table 2: Breakdown timing for ATVS core system.

GMM-FA

Testing (per 265s file)

Total space hidden variables 0.05s
Scoring le-6s
Z-norm 0.02s (~300 test)
T-norm 0.02s (~300 models)
Total (test) 3.66s

XRT test (CPU/speech) 0.013 RT
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Figure 2: Development results for SRE08 english-drils in different conditions: tel-tel (top-leftel-mic (bottom-left), mic-
tel(top-right), mic-mic(bottom-right).

Switchboard-I, Switchboard-Il phase 2 and 3 and ERX increases up to a 5.13%, which is the result weetegl in the
(from SREs 04, 05, 06 and 08). real evaluation.

The system uses a fast scoring procedure simil§8]to Figure 4 (a figure generated by NIST) shows the
Scores are then normalized using ZT-norm (Figurearid results attained by ATVS-UAM system in the real NISRE
finally calibrated using linear logistic regressiavith the 2010 for the condition using interviews and the eam
FoCal toolkit [12]. Calibration has been performed an microphone for train and test. This correspond®uo best
gender-independent way using different calibratioles for result, a 3.5% EER. For comparison, best systertfgisrsame
scores generated using microphone data in traitésting or condition obtain an EER slightly below 2%. Our reésuh
both and scores generated using just telephone data other conditions can go up to 8.5% EER, which isyonl

slightly worse than the 5.13% EER obtained in ourseo
5. Results development test.
Our emphasis in this evaluation was in developing
Figure 2 shows results obtained in the developrpaase for an accurate and fast system. In this sense, Taklengnarizes
optimistic estimation of the T matrix (test dataedsfor ATVS core system testing timing. All execution tEnbave
estimating it). Results range from a mere 0.53% HaRt¢l- been obtained in a Red Hat Enterprise 5.0 server 2@ GHz
tel male and about 3% EER for tel-mic female. Ineortb CPU, with cache memory of 1024 kB and RAM of 4GB. The
have a less optimistic evaluation we used crossiatbn speaker recognition process runs 77 times fastn teal
matrices and testing on the files excluded usiegvibrst case applications.

in Figure 2. In this way we obtain Figure 3 in wWhiEER
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Figure 3. Cross validation development results fbr a
SREO08 conditions, where each cross validation subset
totally excludes the 25% of speakers in the sutestt
from the development.

6. Conclusions

This paper has presented the system submitted BYSAT
UAM to NIST SRE 2010. The system is based on a lagttt
effective single system based on Total variabdityl achieved
a 3.5% to 8.5% EER (depending on the condition) lon t
NIST SRE 2010 real evaluation, working over 75 tiffaeter
than real time.

7. Acknowledgements

This work has been partially supported by proj&tEC
TEC2009-14719-C02-01 and CAM S2009/TIC-1542
MA2VICMR.

(1]

(2]

(3]

8. References

Reynolds D., Quatieri T., and Dunn R., Speaker
verification using adapted Gaussian mixture models.
Digital Signal Processing, 10:19-41, 2000.

Hermansky H. and Morgan N. Rasta processing of
speech. |EEE Transactions on Speech and Audio
Processing, 2(4):578-589, 1984.

Pelecanos J. and Sridharan S., Feature Warping for
Robust Speaker Verification, in 2001: A Speaker
Odyssey: The Speaker Recognition Workshop, Crete,
Greece, June 2001.

-146-

Miss Probabil tv 64)

(4]

(5]

(6]

[7]

(8]

9]

[10] Qualcomm,

NIST SRELD core-core
01-Interview In Train And Test, Same Mic

ATVS_1_PRIVARY

AN

T

s
False Alarm Probab lity 66)

Figure 4. Actual evaluation results achieved atNIS
SRE 2010. The figure corresponds to the sub-case
using only interview data for train and test witiet
same microphone

Reynolds, D., Channel Robust speaker verification via
Feature Mapping, in: IEEE International Conferenoe o
Acoustic Speech, and Signal Proccesing, 2003.

D.A. Reynolds, et al. “The SuperSID Project: Expiaj
high-level information for high-accuracy speaker
recognition,” Proc. ICASSP-03, Hong Kong, Apr 2003.
Kenny, P. and Boulianne, G. and Dumouchel, P.,
“Eigenvoice Modeling With Sparse Training Data”,
IEEE Trans. on Speech and Audio Processing, val. 13
no. , pp 345-354, 2005.

R. Vogt and S. Sridharan, “Explicit modelling of sies
variability for speaker verification,” Computer Splee
Language, vol. 22, no. 1, pp. 17-38, 2008.

Dehak, N., Dehak, R., Kenny, P., Brummer, N., Ougllet
P and Dumouchel, P., Support Vector Machines versus
Fast Scoring in the Low-Dimensional Total Varialili

Space for Speaker Verification In Proc Interspeech
2009, Brighton, UK, September 2009.
NIST SRE 2010 Evaluation Plan, available at

http://www.itl.nist.gov/iad/mig//tests/sre/2010/NISSR
E10_evalplan.r6.pdfaccessed 23/09/2010).

ICSI, OGI (QIO) Front-End software,
available at http://www.icsi.berkeley.edu/ftp/global/
pub/speeclpapers/qgio/ (accessed 12/04/2010).

[11] “Sound Exchange” software, Available at
http://sox.sourceforge.net/ (accessed 28/06/2010).
[12] Niko Brummer, “FoCal Toolkit", Available at

http://sites.google.com/site/nikobrummer/focal
(accessed 12/04/2010).





