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Abstract

This paper addresses the problem of speaker segmentation in
two speaker telephone conversations, proposing a segmenta-
tion approach based on factor analysis and a novel method for
intra-session variability compensation to improve segmentation
performance. The segmentation system is evaluated on the
NIST Speaker Recognition Evaluation 2008 summed channel
test condition, showing that intra-session variability compen-
sation allows to obtain around a 20% relative improvement in
terms of speaker segmentation error.
Index Terms: Speaker segmentation, speaker and session vari-
ability, intra-session variability

1. Introduction
Recently, there has been a great advance in the field of speaker
identification, in part motivated by the NIST Speaker Recogni-
tion Evaluations (SRE). One of the main breakthroughs of the
last years has been the formulation of the Joint Factor Analy-
sis (JFA) for speaker verification [1]. Nowadays most state of
the art speaker verification systems are based on this approach.
Since then, researchers have explored its application to different
areas, specially to study new speaker diarization methods. One
of the most interesting of these methods is the one presented in
[2], a novel approach for streaming speaker diarization, which
shows several differences with traditional diarization systems.
This method makes use of a simple Factor Analysis (FA) model
composed of only eigenvoices [3] to obtain high accuracy in
a two speaker segmentation task on telephone conversations.
However, performance decreases significantly when the num-
ber of speakers is unknown.

Consequently, the speaker identification community has fo-
cused on improving the performance in the two speaker seg-
mentation task on telephone conversations, a task quite related
to speaker verification. In [4] several approaches using JFA and
Variational Bayes are proposed, obtaining better performance
than the traditional Bayesian Information Criterion (BIC) based
Agglomerative Hierarchical Clustering (AHC) [5]. However
all approaches presented in [4] only model inter-speaker vari-
ability to perform speaker segmentation. In [10] the same ap-
proaches are analyzed and inter-session variability compensa-
tion is added, showing that it decreases performance, since
inter-session variability may contain useful information to sep-
arate different speakers in a single session, specially if they are
talking over different channels.

In this work we address the problem of speaker segmenta-
tion in two speaker conversations. We propose two methods to

This work has been partially funded by the national project
TIN2008-06856-C05-04.

compensate the variability presented by a single speaker dur-
ing a session (intra-session variability) and an eigenvoice based
approach for two speaker segmentation similar to the one pre-
sented in [2], obtaining competitive performance compared to
state-of-the-art 2-speaker segmentation systems [4], and show-
ing further improvement when the mentioned variability is com-
pensated.

This paper is organized as follows: In Section 2 we present
the proposed segmentation system, and we describe different
types of variability that may affect a diarization system in Sec-
tion 3. In Section 4, we introduce two approaches to com-
pensate intra-session variability and in Section 5 we evaluate
the speaker segmentation system and the proposed intra-session
variability compensation approaches. Finally, in Section 6 we
summarize the conclusions of this study.

2. Segmentation System
In the proposed speaker segmentation system, described in [6],
we use a factor analysis approach to model the desired sources
of variability. As a starting point we try to capture the variability
present among different speakers. For this purpose, we model
every speaker by a Gaussian Mixture Model (GMM) adapted
from a Universal Background Model (UBM) using an eigen-
voice approach [3], according to:

Ms =MUBM + V y. (1)

Where Ms is the speaker GMM supervector, obtained con-
catenating all Gaussian means, MUBM is the UBM supervec-
tor, V is the low rank eigenvoice matrix, and y is the set of
speaker factors, which follows a standard normal distribution
N(y|0, I) a priori. This way every speaker is represented by a
GMM supervector in a high dimension space, and in such space
we allow the speakers to lay in the low dimension subspace gen-
erated by the column vectors of V , which point to the directions
of maximum variability among speakers. We refer to this vari-
ability as inter-speaker variability and to the low rank subspace
as the speaker subspace.

In our approach we use a 256 Gaussian UBM, and as fea-
ture vectors we use 12 Mel Frequency Cepstral Coefficients
(MFCC) including C0, computed every 10 ms over a 25 ms win-
dow. The dimension of the speaker subspace is 20, compared to
the dimension of the supervector space that is 256×12 = 3072.
This way every point estimate for a given speaker is defined by
a set of 20 speaker factors.

To perform speaker segmentation given a sequence of fea-
ture vectors, as in [2], we estimate the speaker factors for every
frame over a 100 frame window, with an overlap of 990 ms, an
we estimate a 2-Gaussian GMM to model the stream of speaker
factors obtained, after removing silence frames according to a
Voice Activity Detector (VAD). Each one of these Gaussians
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Figure 1: Block diagram of the proposed segmentation system

will be assigned to a single speaker. In contrast to [2], we esti-
mate the GMM using all available data in the recording, rather
than processing 1 minute slices and applying a clustering tech-
nique. The later allows stream processing with 1 minute latency
but the former yields better results. A block diagram of the pro-
posed segmentation system is shown in Fig. 1.

2.1. Initialization

We have detected that a good initialization is quite important to
ensure that every Gaussian in the GMM corresponds to a sin-
gle speaker. In our approach, we use prior knowledge about
speaker factors proposed in [1]: A priori, speaker factors are as-
sumed to be distributed according to the standard normal distri-
bution N(y|0, I). Since we obtain speaker factors from a small
data sample (100 frames, which is small compared to the num-
ber of frames that speaker recognition systems usually manage,
around 10000), using MAP estimation, we can expect the pos-
terior distribution of speaker factors for a single speaker to keep
some properties of the prior. Assuming that the posterior vari-
ance is close to I , we can perform PCA to obtain the direction
of maximum variability in the speaker factor space. Such direc-
tion should be the best one to separate speakers, since both are
supposed to have a variance close to I and a different mean.

This strategy gives two clusters that can be seen as a first
speaker segmentation, and then K-means clustering is per-
formed to reassign frames to the two clusters and a single Gaus-
sian is trained on each of them. Using this frame assignment
directly as segmentation output gives reasonably good results,
as we will see later, in Section 5.

2.2. Core Segmentation

The 2 Gaussians previously trained serve as initial GMM of
the whole recording. Then a two stage iterative process is ap-
plied until convergence: first several Expectation-Maximization
(EM) iterations are used and then, every Gaussian is assigned
to a single speaker and a Viterbi segmentation is performed
(Viterbi 1 in Fig. 1). According to this new frame assignment,
2 Gaussian models are trained and the iterative process restarts
again. Convergence is reached when the segmentation of the
current iteration is identical to that obtained in the previous one.

To avoid fast speaker changes, in the Viterbi segmentation,
we modify the speaker turn duration distribution using a se-
quence of tied-states [7] for every speaker model. This way,
we avoid the state duration to follow a geometric distribution
that cannot accurately model real speaker turn durations. Each
speaker model is composed of 10 states that share the same ob-
servation distribution, a single Gaussian in this case. Tied-states
are not considered for the silence, but a single state without an
observation distribution is used, since the algorithm is forced to
go through the silence state according to the VAD labels. We
have observed that this way of modeling speaker turn duration
yields better results than modifying the transition probability.

2.3. Viterbi Resegmentation and Soft Clustering

The output of the core segmentation system gives accurate
speaker labels in most cases, but these labels can be refined by
means of Viterbi resegmentations (Viterbi 2 in Fig. 1). In this
case we model every speaker with a 32 component GMM ac-
cording to the output of the core segmentation system using as
features 12 MFCC including C0. Again we use 10 tied-states
for speaker models and a single state for all silence frames.

After this resegmentation we retrain the GMM models and
run a forward backward decoding to perform a soft reassign-
ment of the frames to the two speakers. GMM models are re-
trained according to the soft reassignment and a final Viterbi
resegmentation is performed. This approach was first presented
in [4] as soft-clustering.

3. Speaker, Session and Intra-session
Variability in Speaker Diarization

In the proposed approach for speaker segmentation we only take
into account inter-speaker variability. However there are other
sources of variability that may affect a segmentation or diariza-
tion system. In speaker recognition systems, one of the hard-
est problems is to deal with the variability present in a speaker
recorded over different sessions. This is known as inter-session
variability and includes variability due to the speaker, since his
speech may vary along different recording sessions, as well as
variability due to the recording environment. There are several
techniques to model this variability. Some of the more recent
and successful approaches have been Nuissance Attribute Pro-
jection (NAP) for SVM-GMM speaker recognition systems [8],
Eigenchannel modeling, or JFA [9]. All this techniques assume
that the speaker is modeled by a supervector (usually a GMM-
sv) in a high dimension space and different sessions for a given
space produce different estimations of the speaker supervector.
The variability in these estimations or inter-session variability
is assumed to lay in a low dimension sub-space, so all inter-
session variability compensation techniques try to estimate the
component of the speaker session in such space and remove it
to obtain a session independent speaker supervector.

The question is if inter-session variability compensation is
useful for speaker diarization. Speaker diarization systems aim
at answering the question “Who spoke when?” in a unsuper-
vised fashion. We can think that inter-session variability com-
pensation do not help for speaker diarization, for two main rea-
sons: First, diarization is performed over one session without
prior knowledge of the speakers involved, so we will never get
the same speaker over different sessions. Secondly, in many
scenarios session variability models may enhance diarization
performance since different speakers may use different commu-
nication channels. This is the case of telephone conversations
or meetings in a room where the speakers remain static.

Finally, a single speaker can present variability during a
single session when we process such session in small seg-
ments. We will refer to this variability as intra-session vari-
ability. Some examples of this variability includes emotions or
excitement of the speaker as the conversation evolves, or the
unbalanced phonetic load present in small segments as in the
proposed system (1 second segments). Intra-session variability
is not usually taken into account for speaker recognition, since
state of the art systems usually integrate over all observations of
a given speaker obtaining an average model, which may differ
from session to session. In such case intra-session variability
modeling and compensation will only be useful as far as it is re-
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lated to inter-session variability. Actually, both intra and inter-
session variability share many sources of variability, but some
of them are more critical than others. For example, channel is a
source of inter-session variability that in general will not intro-
duce intra-session variability (but it could, e.g., if a speaker is
recorded in a room with a far field microphone and he moves as
he talks). On the other hand, unbalanced phonetic load will be
more critical for intra-session variability modeling, specially as
the segments to analyze in a given session become smaller.

However, intra-session variability is very important and
should be taken into account in the task of speaker diarization,
since in such task we analyze small and pure segments and try
to agglomerate them to obtain pure clusters that should belong
to a single speaker. In the following section we describe an ap-
proach for supervised intra-session variability compensation.

4. Intra-session variability compensation
Given a recording, the segmentation system proposed in section
2, produces a sequence of speaker factor vectors estimated every
10 ms over 1 sec. window. Assuming that a set of S recordings
is available and each recording contains a single speaker, we can
obtain a sequence ys = ys1, ..., y

s
Ns of Ns speaker factor vec-

tors for every recording session s. The speaker factors obtained
from a session belongs to the same class (same speaker), so we
can study the inter-session and intra-session as between-class
and within-class variability respectively. This approach is simi-
lar to the one presented in [11], but in that case it was used for
speaker recognition and inter-session variability compensation.

4.1. Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a well known technique
for dimensionality reduction in pattern recognition that, given a
set of features belonging to different classes and laying in the
feature space, seeks the orthogonal basis for such space that en-
ables better discrimination between different classes by max-
imizing between-class variance and minimizing within class
variance. Linear discriminant analysis assumes that the obser-
vations belonging to each class are normally distributed and that
within class covariance is kept across different classes. The
speaker factor vectors satisfy the first assumption, while the
second is expected to be satisfied since we do not expect the
posterior covariance of ys to be very different of the prior as we
explained in section 2.

In our problem we estimate between-class covariance (Sb)
and within class (Sw) covariance as:

Sb =
1

S − 1

S∑
s=1

(µs − µ)(µs − µ)T (2)

Sw =
1

S − 1

S∑
s=1

1

Ns − 1

Ns∑
n=1

(ysn − µs)(ysn − µs)T (3)

µs =
1

Ns

Ns∑
s=1

ysn (4)

µ =
1

S

Ns∑
n=1

µs (5)

The problem reduces to find the matrix v of eigenvectors
that satisfies:

Sbv = λSwv, (6)

and project the speaker factors onto v or onto a low rank matrix
A obtained selecting those eigenvectors having higher eigenval-
ues, for dimensionality reduction.

4.2. Within Class Covariance Normalization

Within class covariance normalization (WCCN) is a normaliza-
tion method that allows to obtain a linear transformation for a
given set of features belonging to different classes so that the
within class covariance matrix Sw defined in Eq. 3 is equal
to the identity matrix I . Again this technique assumes that all
classes have the same covariance matrix.

To obtain the linear transformation we first obtain Sw as
shown in Eq. 3 and then we apply Cholesky decomposition, so
the transformed speaker factors y′ will follow this expression:

y′ = Ry (7)

S−1
w = R′R (8)

where R is the upper triangular matrix obtained by Cholesky
decomposition.

5. Performance Analysis
5.1. Experimental Setup

We study the performance of the proposed segmentation system
and intra-speaker variability compensation in terms of segmen-
tation error rate. As development data to train the UBM, V
matrix, LDA and WCCN we use all telephone data available
from 1conv and 8conv conditions from the NIST SRE evalu-
ations 2004, 2005 and 2006. As evaluation data we use the
summed channel test condition from the NIST SRE 2008. This
condition comprises 2213 2-speaker telephone conversations of
around five minutes length each. As ground truth for segmen-
tation error rate computation we extract the segmentation labels
from the ASR NIST transcriptions obtained separately on each
telephone of the conversation.

5.2. Segmentation Performance: Baseline

As we explained in Section 2, the proposed segmentation sys-
tem comprises several steps, including PCA initialization, K-
means clustering, iterative EM and Viterbi segmentation in the
speaker factor space, a Viterbi resegmentation using MFCC fea-
tures and a last soft-clustering resegmentation. Table 1 shows
the results obtained by the segmentation system after every step:

Segmentation system Seg error (%) σ(%)

PCA 20.2 14.3
+K-means 4.9 8.8
Core segmentation system 3.1 6.6
+Viterbi resegmentation 2.3 6.2
+Soft-clustering 2.2 6.1

Table 1: Performance of the segmentation system and standard
deviation step by step.

Given these results we can extract several conclusions.
First, speaker factors enable easy separability between speak-
ers. Just with PCA and K-means clustering we get 4.9% seg-
mentation error. Note that at that point, frames are assigned to
one speaker or the other assuming statistical independence, no
context or temporal information is used. Completing the core
system gives great improvement and results are comparable to
those obtained with the best systems presented in [4]. More-
over, after resegmentations results improve further.
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5.3. Intra-speaker Variability Compensation

To study the performance of intra-speaker variability compen-
sation we compare the segmentation error obtained before the
resegmentation stages (after the core segmentation in Fig. 1)
with and without using the intra-speaker variability compensa-
tion methods described in Section 4. For comparison when us-
ing LDA for dimensionality reduction we show results using 20
speaker factors (baseline system) and 50 speaker factors.

Segmentation system Seg error (%) σ(%)

Baseline (20 spk factors) 3.1 6.6
WCCN (20 spk factors) 2.5 5.5
50 spk factors 2.9 6.9
LDA 50 to 20 2.7 5.7
LDA 50 to 20 + WCCN 2.5 5.7
50 spk factors + WCCN 2.1 5.6

Table 2: Performance of the core segmentation system with and
without intra-speaker variability compensation.

As we can see in Table 2, both LDA and WCCN ap-
proaches for intra-speaker variability compensation outper-
forms our baseline. Using WCCN directly on 20 speaker factors
reduces the segmentation error from 3.1% to 2.5%, obtaining a
20% of relative improvement. Using LDA to obtain 20 dimen-
sion vectors from 50 speaker factors improves also the perfor-
mance of the system compared to the baseline using both 20 and
50 speaker factors. In addition, the performance can be further
improved applying WCCN after LDA.

However using LDA+WCCN on 50 speaker factors is not
significantly better than using WCCN directly on 20 speaker
factors. Moreover, the most critical step in the proposed system
regarding computational cost is the speaker factor computation
(O(d2), with d the dimension of the speaker factors), and once
speaker factors are computed, the classification algorithm is fast
compared to speaker factor computation (O(d)). Therefore, the
computational cost of the system using LDA for dimensional-
ity reduction is comparable to the cost of the system using 50
speaker factors and is much higher than the cost of the system
using 20 speaker factors. For this reason, we show the results
obtained with 50 speaker factors and WCCN for intra-speaker
compensation. We obtain a 28% relative improvement when
using WCCN on 50 speaker factors. It seems that a higher di-
mensionality enables WCCN to improve further.

Taking into account the computational cost, we can affirm
that, even though LDA based intra-session variability compen-
sation shows improvements, it is not useful for our system since
using WCCN on low dimension speaker factor space performs
as good as using LDA+WCCN on a higher dimension speaker
factor, but this second approach is much more costly, and if
we use WCCN directly on the higher dimension speaker fac-
tor space we obtain further improvement keeping the computa-
tional cost comparable to LDA+WCCN.

5.4. Results with the Full Segmentation System

In the previous subsections we have shown results for the core
segmentation system, but the proposed segmentation system
can increase its performance using Viterbi resegmentation af-
ter obtaining the core segmentation output.

Results in Table 3 show that while increasing the num-
ber of speaker factors is not effective after Viterbi and soft-
clustering resegmentations, intra-session variability compensa-
tion using WCCN is still effective, obtaining a relative perfor-

Segmentation system Seg error (%) σ(%)

Baseline + reseg 2.2 6.1
WCCN + reseg 1.8 5.0
50 spk factors + reseg 2.2 6.2
50 spk factors + WCCN + reseg 1.7 5.2

Table 3: Performance of the segmentation system with WCCN
for intra-speaker variability compensation.

mance improvement of 18% for 20 speaker factors and 23% for
50 speaker factors. In addition it is shown that increasing the
number of speaker factors may not be helpful if intra-session
variability is not compensated, probably because some direc-
tions of the speaker space are related to intra-session variability.

6. Conclusions
In this study, we have introduced two methods for intra-session
variability compensation in the task of speaker segmentation
and diarization, based on LDA and WCCN. In addition, we have
proposed a two speaker segmentation system based on the one
presented in [2], introducing a set of improvements, including a
novel PCA initialization and a modification of the speaker turn
duration distribution, that enables us to obtain a 2.2% segmen-
tation error on the summed dataset from the NIST SRE 2008.
We have shown that intra-session variability compensation can
improve performance of a segmentation system, reducing the
segmentation error rate to 1.8%.
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