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Abstract 
In this paper we describe a state-of-the-art language 
identification system based on a parallel phone recognizer, the 
same as in PPRLM, but instead of using as phonotactic 
constraints traditional n-gram language models we use a new 
language model which is created using a ranking with the 
most frequent and discriminative n-grams between languages. 
Then, the distance between the ranking for the input sentence 
and the ranking for each language is computed, based on the 
difference in relative positions for each n-gram. The advantage 
of the proposed ranking is that it is able to model reliably 
longer span information than in traditional language models 
and that with less training data it is able to obtain more 
reliable estimations. In the paper, we describe the 
modifications that we have made to the original ranking 
technique, i.e., different discriminative formulas to establish 
the ranking, variations of the template size and a penalty for 
out-of-rank n-grams. Results are presented on a new and 
larger database. The test database has been significantly 
increased using cross-fold validation for more reliable results. 
Index Te rms: Language Identification, n-gram frequency 
ranking, text categorization, PPRLM 

1. Introduction 
Currently, one of the most used technique in Language 
identification (LID) is the phone-based approach, like Parallel 
phone recognition followed by language modeling 
(PPRLM)[1]. In PPRLM, the language is classified based on 
statistical characteristics extracted from the sequence of 
recognized allophones. 

In spite of the high LID accuracy results obtained by 
PPRLM, the accuracy is reduced due to the presence of bias in 
the scores generated by each recognizer and because PPRLM 
does not model correctly long-span dependencies (i.e. to use 
high order n-gram language models) probably due to an 
unreliable estimation of the n-gram probabilities. In order to 
solve the first problem, we decided to use a GMM classifier 
and a normalization procedure called differential scores. 
Regarding the second problem, we decided to use a ranking of 
occurrences of each n-gram with higher n-grams, in a similar 
way to [2] and [3] where the ranking is applied to written text. 
Although the information source is very similar to PPRLM 
(frequency of occurrence of n-grams), results are much better, 
as we will see. 

This paper is a continuation of the work done in [4] and 
[5] but tested on a new database with more languages and 
including new modifications to the ranking algorithm. Section 
2 describes the system setup and basic techniques. In Section 3 
the basic n-gram ranking technique and the new discriminative 
n-gram ranking are described, together with the results 
considering all the new alternatives considered. Finally, 
conclusions and future works are presented in Section 4. 

2. System description 

2.1. Database 
For this work we have used the C-ORAL-ROM database [6], 
which consists of spontaneous speech for 4 main Romance 
Languages: Spanish, French, Portuguese, and Italian. This 
database is made of 772 spoken texts with more than 120 
hours of speech and around 300K words for each language. 
The database transcriptions and annotations were validated by 
both external and internal reviewers. The database includes 
recordings in two different types: formal and informal (equally 
distributed). The formal recordings consist of three different 
contexts: natural (e.g. political speech, teaching, preaching, 
etc.), media (e.g. talk shows, news, scientific press, etc), and 
telephone (e.g. private and human-machine). The informal 
recordings include monologues, dialogues, and conversations 
in familiar and public contexts. 

Next, we describe the main changes that we made to the 
database in order to adapt it to our experiments and 
recognition system: a) Most of the sound files were sampled to 
22,050 Hz @ 16 bits and some others to 11 KHz @ 16 bits, all 
of them were sub-sampled to 8 KHz @ 16 bits in order to use 
them with the acoustic models of our recognizer. b) Some 
recordings in the database were too long (i.e. longer than 10 
minutes) so they were splitted into shorter files. This way, we 
also eliminated noised and difficult to recognize sections, c) 
Finally, we generated random recording lists in order to avoid 
any kind of bias at training. Table 1 shows the number of 
sentences in the database that we have finally used. The 
average sentence length is 6.2 seconds. 

 

 Spanish French Italian Portuguese

Sentences 17634 16474 19074 17946 

Table 1: Number of sentences by language 

2.2. General conditions of the experiments 
The system uses a front-end with PLP coefficients derived 
from a mel-scale filter bank (MF-PLP), with 13 coefficients 
including c0 and their first and second-order differentials, 
giving a total of 3 streams and 39 parameters per frame. We 
have used two phoneme recognizers, for Spanish and English, 
with context-independent continuous HMM models. For 
Spanish, we have considered 49 allophones and, for English, 
61 allophones, all with 3 states. All models use 10 Gaussians 
densities per state per stream. 

The performance of phoneme recognizers is very low for 
several reasons: a) there is a mismatch between the 
recognizers’ languages and the 4 languages to be identified; b) 
the recordings still contain different kind of noises, 
background music, etc., and very spontaneous speech; c) the 
acoustic models were not adapted to this database. So, there is 
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a clear mismatch in the languages and in the channel 
conditions. The good thing of using this setup is that 
improvements obtained with our techniques will be more 
evident, as we will see. 

In order to increase the reliability of the results presented 
in the next sections, we performed a cross-fold validation, 
dividing all the available material in 9 subsets: 5 subsets to 
estimate the LMs, 2 subsets to estimate the Gaussian classifier, 
1 subset for development, and 1 subset for test. 

2.3. Description of PPRLM 
Nowadays, PPRLM is the most popular approach to language 
identification. The main objective of PPRLM is to model the 
frequency of occurrence of different allophone sequences in 
each language. The technique can be divided into two stages. 
First, several parallel phone recognizers take the speech 
utterance and outputs a sequence of allophones corresponding 
to the phone sets used for each one. Second, the sequence of 
allophones is used as input to a bank of n-gram language 
models (LM) in order to capture phonotactics information. In 
this stage, the language model scores the probability that the 
sequence of allophones corresponds to a given language. 

The main advantages of PPRLM are: a) Since it uses 
many recognizers, it is possible to cover most of the phonetic 
realizations of every language. b) It is possible to have phone 
recognizers modeled for languages different to the languages 
that we have to identify, which is especially useful in 
situations when the training data is not enough to obtain 
reliable language dependant models. On the other hand, 
PPRLM presents two major weaknesses: a) The presence of 
bias in the log-likelihood scores generated by each 
combination of the N recognizers and M language models and, 
b) the data sparcity and limitations of the n-grams LMs to 
model long span information.  

The bias problem is mainly due to the differences between 
the allophone dictionaries and training data used by each 
recognizer [1]. In [7] two solutions for this problem are 
described. The first solution is called bias removal; it consists 
on a normalization procedure using as LM score the calculated 
score minus the average score in the training data. Then, the 
language is identified using a Maximum Likelihood Classifier. 
The second solution is to use another kind of classifier, such 
as Gaussian, K nearest-neighbor, or Support Vector Machine 
(SVM) classifiers. The advantage of using these classifiers is 
that the classification is not based on using an absolute 
discriminant function, and therefore it is not affected by the 
bias. In our system, given the good results obtained in [8], we 
decided to continue using a Gaussian Classifier. These 
classifiers also benefit from applying normalization of the 
scores (e.g., the T-norm normalization). In our system, we use 
what we call “differential scores”, which is a similar 
normalization. 

Regarding the problems with the LMs, the data sparcity is 
difficult to solve because it would require new training data 
(i.e., obtaining new recordings or using an external corpora 
with the same dictionary of phonemes used in our platform) 
consisting of a sequence of recognized phonemes. Regarding 
solutions for the problem of including long span information 
to the language models, in [9] they describe slight 
improvements on the LID rate when using the skip-gram 
technique, and in [3] they present LID experiments on written 
text for six languages using three different kinds of LM: 
Markov models, trigram frequency vectors, and n-gram text 
categorization, with good results for the last technique. In our 
case, we have used and extended the n-gram text 
categorization technique [2]. 

2.4. Gaussian classifier for LID 
As mentioned above, the general PPRLM approach has a bias 
problem in the log-likelihood score for the languages 
considered. To tackle this issue, we proposed in [10] to use a 
Gaussian classifier instead of the usual decision formula 
applied in PPRLM. With all the scores provided by every LM 
in the PPRLM module we prepare a score vector. With all the 
sentences in the training database we estimate a Gaussian 
distribution each language. In recognition, the distance 
between the input vector of LM scores and the Gaussian 
distributions for every language is computed, using a diagonal 
covariance matrix, and the distribution which is closer to the 
input vector is the one selected as identified language. 
Besides, the Gaussian classifier allows us to increase the 
number of Gaussians to better model the distribution that 
represents our classes.  

One important conclusion of our work in [10] is that, 
instead of absolute values, we need to use differential scores: 
the difference between the score obtained by one LM and the 
average score obtained by the other ‘competing’ languages: 
(SCi’ = SCi – Aver(SCj, j≠i)) in Figure 1. We applied it to 
unigram, bigram and trigram separately, with 8 scores x 3 n-
grams = 24 features in total in the feature vector. 

 

 
Figure 1: PPRLM scores used for the LID system 

 
The average result in LID for PPRLM is 35.8% error rate. 

It is a bad result, but, as we mentioned in Sections 2.1 and 2.2, 
the performance of the acoustic models is really poor and the 
sentences average length is short. 

3. N-Gram Frequency Ranking 
In this section we will describe the original text categorization 
technique and the modifications that we have made to improve 
it, as well as the selection of the most discriminative n-grams. 

3.1. Description of the Basic Technique 
In [2], an interesting technique that combines local 
information (n-grams) and long-span information (collected 
counts from the whole utterance) is described. In summary, for 
training the original technique proposes the creation of a 
ranked template with the N (typically 400) most frequents n-
grams (up to n-grams of order five) of the character sequences 
in the train corpus for each language sorted by occurrence and 
then orthographically in case two or more n-grams contain the 
same occurrence (e.g., positions 10 and 11 in Figure 2).  

During the evaluation, a dynamic ranked template is 
created for the phoneme sequence of the recognized sentence 
following the same procedure. Then a distance measure (OOP, 
Out-Of-Place) is applied between the input sentence template 
and each language dependent template previously trained. The 
distance for a given ranking T is calculated using Eq. 1.  
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Eq. 1 

Where L is the number of n-grams generated for the input 
sentence. If an n-gram does not appear in the global ranking 
(meaning that it has not appeared in training or it is not in the 
top n-grams selected) it is assigned a maximum distance: the 
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size of the ranking. The selected language is the one that 
presents the higher correlation between templates (i.e., the 
lower distance).  

  
Figure 2: Example and calculation of distance score using 

a ranking of n-grams as proposed by [2] 
 

Figure 2 shows an example of one of the templates created 
in our system using the English phoneme set and the template 
created for the unknown sentence. 

3.2. Our baseline for N-Gram Ranking 
In [5] we described several modifications that we made on the 
basic technique proposed in [2]. Below we provide a brief 
description of the most important ones. 

Our first variation is what we called the “golf score”. As 
the number of occurrences of the n-grams in the input 
sentence is very low, most n-grams have the same number of 
occurrences and should have the same position in the ranking. 
It is the same as a ranking in golf (the sport): all players with 
the same number of strokes share the same position.  Figure 3 
shows an example of the modification applied to the original 
template using the proposed “golf” score. Using this technique 
we obtained a 2.5% relative improvement. 

For the second modification we thought that having only 
one global ranking was not efficient since, in general, the top 
positions were always devoted to unigrams & bigrams, which 
we already knew that were less discriminative for LID. So, we 
decided to have different rankings for each n-gram order 
(besides that, the procedure is the same). As the ranking size 
for unigram and bigram will be different between languages, 
we need an additional normalization in the distance measure, 
i.e., we divide it by the number of items in the set for that n-
gram order. We also increased the template size to an 
optimum of 3000, which is the baseline for this paper. 

 
Figure 3: Ranking template modification with “golf score” 

3.3. N-Gram Discriminative Ranking  
Inspired in the work of [11], where better LID results could be 
obtained using the most discriminative units, we thought that 
we should introduce the same concept in the ranking creation 
process; therefore, we decided to give more relevance (higher 
positions) in the ranking  to the items that are actually more 
specific to the language that is being identified, i.e. n-grams 
with a high frequency in one language but with zero or low 
frequency in the competing languages. 

In our work we propose a variation of tf-idf. After the 
original global rankings are created, we have the number of 
occurrences of each n-gram: n1(w) = occurrences of n-gram w 
in the current language, and n2(w) = the average occurrences 
of w in the competing languages, where T are the ranking 
templates created for each language. 
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Eq. 2 

As the number of total occurrences will be different for 
each language and n-gram order, before the subtraction a 
normalization is needed to have comparable amounts. Being 
N1 the sum of all occurrences for the current language and N2 
the average for the competing languages (see Eq. 2): 
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Eq. 3 

 
Another important issue is to use a threshold value for 

these normalized values (Eq. 3), i.e., to discard the n-grams 
that were below a threshold as non-representative. In our case, 
we obtained an optimum using 9-9-3-3-2 (threshold values for 
each n-gram starting at unigram). Then, we considered several 
alternative formulas with the same philosophy as tf-idf for the 
final number of occurrences used to assign the final position in 
the ranking (which we will call n1’’).  

1 n1’’ = (n1’– n2’) / (n1’+ n2’) 
2 n1’’ = n1’ * (n1’– n2’) / (n1’+ n2’) 
3 n1’’ = log(n1’) * (n1’– n2’) / (n1’+ n2’) 
4 n1’’ = sqrt(n1’) * (n1’– n2’) / (n1’+ n2’) 
5 n1’’ = n1’ * (n1’– n2’) / (n1’+ n2’)2 
6 n1’’ = abs (n2’- n1) / sum all lang(n1) 

 
In Table 2 we can see the results in LID error rates for the 

6 different formulas considered. We present the results for 
each n-gram order alone and, in the final column, the result for 
the fusion of all n-gram classifiers. This way, we can see the 
relevance of each n-gram alone. The first line is our baseline 
experiment: no discriminative ranking, “golf score”, 
independent templates for each n-gram with 3,000 units.  
 

Formula 1-gram 2-gram 3-gram 4-gram 5-gram All 
No discrim. 74.4 43.1 38.7 44.3 58.6 34.40 

 1 52.6 37.6 32.9 34.4 49.6 24.93 
 2 53.8 40.6 35.8 39.2 56.9 32.93 
 3 53.4 38.6 32.4 35.3 54.8 29.10 
 4 53.4 39.7 34.2 35.9 56.1 30.38 
 5 52.6 37. 6 32.8 34. 4 49.6 24.91 
 6 52.7 39.3 32.8 34.4 49.4 25.23 

Table 2: Error rates for the different formulas. 

We can see that the discriminative ranking means an 
outstanding improvement (from 34.40 to 24.91, 27.6% relative 
improvement) and without it, results are similar to PPLRM, 
although slightly better (34.4 vs. 35.8%). We also observe in 
the table that, as could be expected, the trigram is the most 
powerful classifier. But what is extremely interesting is that 
the 4-gram is very close in performance, so it is a clear 
advantage over PPRLM, where obtaining reliable estimates 
for 4-gram is difficult and requires a huge training database. 

The best result corresponds to the formula 5. Its advantage 
is that it normalizes the values between 1 and -1: 1 means that 
the n-gram appears in the current language but not in the other 
competing ones (n2’=0), indicating that it is especially relevant 
for that language; -1 means just the opposite (n1’=0), so the n-
gram does not appear in the current language. 
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3.4. Influence of the template size 
In Table 3 we can see the effect of the template size for the 
best configuration (formula 5 in previous section). So, the best 
results correspond to a template size equal to 5000, although it 
begins to saturate, and the improvements are only obvious in 
4-gram and 5-gram, which could be expected because is where 
more units are left out the template. So, an alternative that we 
are considering is to have different sizes for each n-gram. 
Obviously, this optimum will depend in the number of 
allophones in each language, so some fine tuning will be 
needed for another setup. 
Template size 1-gram 2-gram 3-gram 4-gram 5-gram All 

500 53.6 40.0 52.6 57.9 66.7 36.70 
1000 53.0 38.8 44.8 47.5 61.0 31.62 
2000 52.8 37.9 36.5 39.5 53.6 27.13 
3000 52.7 37.6 32.8 34.4 49.6 24.91 
4000 52.7 37.5 32.8 34.0 48.2 24.70 
5000 52.7 37.5 32.8 34.0 48.0 24. 68 

Table 3: Error rates for different template sizes. 

3.5. Influence of out-of-rank n-grams 
One issue that we have to take into account is that for high 
order n-grams the amount of out-of-rank units increases. Our 
first approach was to assign these units the last position in the 
template (the template size). But it is clear that some penalty 
can be applied for those cases, so we decided to multiply the 
last position by a factor greater than 1 for out-of-rank units. In 
Table 4 we can see the results. The baseline uses 3,000 units.  

We can see that there is an optimum for the penalty 1.7, 
with improvements from 3-gram to 5-gram, as could be 
expected (unigram and bigram have almost no out-of-rank 
units). Obviously, improvements saturate for large penalties. 
Another interesting result is that this penalty is more effective 
than just increasing the template size (which could be an 
alternative): in 3-gram, 31.8 (1.7 penalty) vs. 32.8 (5,000 
units) in Table 3. And we obtain similar gains for 4-gram and 
5-gram (slightly less). The probable reason is that just 
increasing the template size includes very unreliable n-grams, 
especially for trigram. 
Penalty factor 1-gram 2-gram 3-gram 4-gram 5-gram All 

1.0 (base) 52.6 37.6 32.8 34.4 49.6 24.91 
1.35 52.6 37.6 31.8 33.7 48.7 24.57 
1.7 52.6 37.5 31.8 33.4 48.3 24.47 
2.0 52.6 37.5 31.8 33.5 48.1 24.48 
2.5 52.6 37.4 31.9 33.5 47.9 24.51 
3.0 52.6 37.4 31.9 33.5 47.9 24.57 

Table 4: Error rates for penalties for out-of-rank units. 

3.6. Stratified rankings 
After examining the rankings obtained, we considered the 
possibility of grouping n-grams with close values in n1’’ value 
considered for the ranking, so that we “smooth” the ranking.  

Total 
units 

Units/ 
cluster 

1-gram 2-gram 3-gram 4-gram 5-gram All 

3000 1 (base) 52.6 37.6 32.8 34.4 49.6 24.91 
3000 2 52.6 37.5 31.8 33.4 48.0 24.54 
3000 3 52.6 37.5 31.9 33.5 47.8 24.55 
3000 4 52.6 37.5 32.0 33.5 47.8 24.62 
4000 2 52.6 37.5 31.8 33.5 47.6 24.62 
6000 2 52.6 37.5 31.8 33.5 47.5 24.62 

Table 5: Error rates for penalties for out-of-rank units. 

 

In Table 5 we can see the results for different template 
sizes and number of units in each cluster. E.g. last row means 
a 3000 cluster template size with 2 units/cluster. Again we can 
see some improvements, especially for 4-gram and 5-gram. 

4. Conclusions and Future Work 
We have demonstrated that the n-gram Frequency Ranking 
approach overcomes PPRLM thanks to the longer span that 
can be modeled, especially for the great effect of the 4-gram, 
and partially of the 5-gram. To obtain this improvement, the 
following issues have been crucial: 
 n-gram discriminative rankings with the normalized 

value for the number of occurrences are able to overcome 
PPRLM (31.6% relative improvement, 24.47 vs. 35.8). 

 The ranking size should be between 3,000 and 5,000 
depending on the n-gram order. 

 Applying a penalty to out-of-rank n-grams may provide 
up to 1.7% relative improvement. 

 Similar gains can be obtained with the stratified rankings. 
 
As future work, we will consider different template sizes 

and penalties for the different n-grams to achieve the best 
result possible in the fusion of all of them. 
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