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Abstract
Our aim is to perform a comparative evaluation of potential

of oral versus nasal sounds in a European Portuguese Speaker
Verification system. For that, we report, in this paper, the work
on the necessary detection of the relevant segments. Imple-
mented detection and classification consists in a typical cas-
cade of speech framing, feature extraction and the use of clas-
sifiers. A total of 31 different features - including a subset of
the features used recently by Pruthi and coworkers for Ameri-
can English nasal vowels detection - were extracted from each
frame. Taking into account the small dataset restriction, we
selected three classifiers: the well known SVM; the, more re-
cent, Naive Credal Classifier 2 (from the Naive Bayes family
of classifiers) and a Metaclassifier based on boosting (Multi-
BoostAB). Results, using a small database, showed as the best
classifier the MultiBoostAB. Best results for Recall, Precision
and F-measure, of 87.04, 88.0 and 87.5 %, were obtained for
this classifier when trained with an equal number of samples of
each class and non-including the first 40% of the production of
the nasal vowels.
Index Terms: Nasal vowels, Blind Segmentation, Naive Credal
Classifier 2, MultiBoost, European Portuguese.

1. Introduction
Segmentation and labeling of speech material according to pho-
netic or similar linguistic rules is a fundamental task in speech
processing. A “Blind speech segmentation procedure allows a
speech sample to be segmented into sub-word units without the
knowledge of any linguistic information (such as, orthographic
or phonetic transcription) [1].

One application of speech segmentation is on Speaker Ver-
ification systems, to provide a sub-word level segmentation [1].

Nasal sounds are more speaker-dependent due to the con-
siderable differences among individuals shapes of the res-
onators involved [2]. These differences on size and shape of the
nasal cavities can cause differences in the spectral characteris-
tics of nasal murmurs for different speakers [3]. As Portuguese
is a language rich in nasal sounds, the segmentation, detection
and classification of these sounds needs attention.

According to [4] a vowel nasalization detector is essential
for speech recognition (particularly the recent landmark-based
recognition) in languages with phonemic nasalization (as is the
case of Portuguese). To best of our knowledge no such detector
has been developed yet.

Our goal is to perform a comparative evaluation of oral ver-
sus nasal sounds potential in an EP speaker verification system.
For that, we report, in this paper, the work on the necessary de-
tection of the relevant segments. As no comparable database

as the TIMIT used by, for example, Pruthi [5], for our inves-
tigations, the problem of developing the speaker independent
segmentation system included the constraint of being developed
with only a small amount of data (pre-existent if possible), in-
cluding noisy recording conditions e less than perfect articula-
tions.

1.1. Related work

Recently the detection/segmentation of nasal vowels was ad-
dressed by Pruthi and coworkers. In [5], the authors evaluate,
for American English, a set of nine acoustic parameters (APs).
Those APs came from previous studies and almost referenced
as capable to well describe the vowel and nasalize segments. In
addition, they work only with the middle 1/3rd of the frames
for oral vowels and the last 1/3rd of the frames for nasalized
ones. They used SVMs with linear and Radial Basis Func-
tion (RBF) kernels as classification methods and three different
databases (StoryDB, TIMIT and WS96/97). The SVM outputs
were mapped to pseudo-posteriors histogram to achieve the fi-
nal decision using a probabilistic measurement. Results for se-
lected APs were compared with other two sets (6 other features
and 39 MFCC). Best accuracies were achieved by the RBF Ker-
nel SVM with proposed APs, obtaining accuracies of 96.28%,
77.90% and 69.58%, respectively for the databases StoryDB,
TIMIT and W96/97.

Most representative works on Portuguese phoneme seg-
mentation were performed using HMMs, not suitable for small
datasets situations, such as the one addressed in this paper.

2. System Overview
The speech waveform is first split into small segments (frames).
All subsequent processing is frame based.

First step consists in feature extraction (details in sec. 3) for
each of the frames of the input signal. As our target classes are
included in the Voiced part of the speech signal, our second step
is to classify each frame as Voiced or Unvoiced. The algorithm
used for this step is based in [6]. As a third step, classifiers are
applied to classify each frame in one of the classes of interest:
Oral Vowels, Nasal Vowels, Other. The classifiers considered
were chosen by their potential to being trained with a small data
set.

3. Features
An extended set of 31 features was used in our experiments. A
subset of the features used recently by [5] was implemented,
being the basis of our feature set. Our purpose is to investigate
if they can be useful for languages other than English, particu-

FALA 2010
VI Jornadas en Tecnología del Habla and II Iberian SLTech Workshop

-205-



larly in European Portuguese (EP) - a language with nasal vow-
els in its phonological inventory. Due to their higher relevance
for the present work, these features are described in the fol-
lowing subsections. Other feature groups were also included:
frequencies (F0,F1,F2,F3,F4,Instant Frequency), Childer’s [7]
nasal and vowel detection features (Nasal Rate, Vowel Rate,
Volume of Low and High Band frequencies) and others com-
monly used in speech segmentation (Energy, Energy rate, En-
ergy in low and high bands, ZCR, Entropy, Spectral features
(rollOff, centroid, flux, flattening) ).

3.1. teF1

Teager energy operator was used by [8] for hypernasality detec-
tion, using a pitch synchronous approach. As an alternative [5]
proposed the use of the correlation between the Teager energy
profiles of lowpass filtered speech and bandpass filtered speech,
the correlation between the Teager energy profiles of narrow
bandpass filtered speech and wide bandpass filtered speech cen-
tered around two different frequency regions be considered. In
this case, the frequency regions were centered on the first two
formant frequencies, obtained from a formant tracker.

Teager energy profile, Ψd[x(n)], for a signal x(n) is calcu-
lated as:

Ψd[x(n)] = x2(n) − x(n+ 1)x(n− 1) (1)

The teF1 feature can be estimated as the correlation between
Narrow and Wide band filtered signals:

teF1 = ρ(Ψd[sNBF1],Ψd[sWBF1]) (2)

where sNBF1/F2 and sWBF1/F2 are the narrowband and wide-
band filtered speech signal centered around F1/F2 respectively.
The narrowband filter uses a 100 Hz bandwidth and the wide-
band filter was set to 1000 Hz both with a 200 order filter.

3.2. nPeaks40dB

This feature [5] was designed to capture the large extra poles
across spectrum as author mention. Basically count the number
of peaks in limits of 40 dB of maximum dB amplitude of com-
plex cepstral spectrum. Including only peaks between 0−4000
Hz.

3.3. F1BW

Pruthi in [5] suggest that even though bandwidths of oral for-
mants may not increase due to the losses in the nasal cavity, the
bandwidths of these formants may seems to be wider because of
unresolved poles which appear at frequencies very close these
oral formants. The feature in question means is obtained from
the ESPS formant tracker algorithm, as made available in the
Snack ToolKit.

3.4. A1-H1fmt

In [9] author distinguish the difference between the amplitude of
the first formant (A1) and the first harmonic (H1), and change in
A1-H1 over time as being correlated to the perception of nasal-
ity. A reduction in A1-H1 is expected because A1 reduces with
nasalization also confirmed by [5].

3.5. std0-1k

Standard deviation (STD) of the local spread of energy around
the centre of mass (CM) was found to be a very good measure

of nasalization. The feature can be estimated by measuring the
second moment of local energy around CM. The term “local”
was defined to include all energy within a specified frequency
radius of CM [10].

Calculated between two frequency ranges, f1, and f2, the
CM, f̄ , is defined as:

f̄ =
1

A1

f2∑
f=f1

fX(f) withA1 =

f2∑
f=f1

X(f) (3)

whereX(f), is the value of the Discrete Fourier Transform
(DFT) spectra at frequency f . For nasalized vowels the CM
must be computed between 0 and 1 kHz, which covers the first
formant range of most men and women.

Before STD estimation and proposed by Glass in [10], the
DFT spectra was windowed with a trapezoidal windows before
the CM computation to reduce the CM function sensitivity to
sudden changes at the end points, such as formant passing be-
low 1000 Hz. The windows shape is flat between 100 and 900
Hz, and had 100 Hz tapers at each end. Applying this win-
dows the spectra were not sudden changes in CM caused by the
marginal movement in energy across the upper boundary.

In [5] the author also proposes, before CM calculation, to
set any amplitude value less than threshold (20 dB below max-
imum) equal to threshold, and then subtract threshold from all
values to set floor to zero.

4. Classifiers
Taking in consideration the small dataset restriction, as classi-
fiers, besides the commonly used SVM, 2 others were selected.
One from the Naive Bayes family, the Naive Credal Classifier 2
(NCC2) [11]; the other a Meta classifier using Boosting [12].

4.1. Support Vector Machines (SVM)

SVMs (ex: [12]) are based on the concept of decision planes
that separates between a set of objects having different class
memberships. Most classification tasks demand complex struc-
tures in order to make an optimal separation, i.e., correctly clas-
sify new objects (test cases) on the basis of the examples that are
available (train cases). To address this problem, the original ob-
jects are mapped using a set of mathematical functions, known
as kernels. The mapped objects will be linearly separable and,
thus, instead of constructing the complex separation curve, all
we have to do is to find an optimal line that can separate the
classes. There are number of kernels that can be used in SVM
models. These include linear, polynomial, RBF and sigmoid.
The RBF is by far the most popular choice of kernel types. This
is mainly because of their localized and finite responses across
the entire range of the real x-axis. We used libSVM implemen-
tation, running under Weka [12].

4.2. Naive Credal Classifier 2 (NCC2)

The NCC2 is an extension of Naive Bayes to imprecise proba-
bilities that aims at delivering robust classifications also when
dealing with small or incomplete data sets [11]. Robustness is
achieved by delivering set-valued classifications (that is, return-
ing multiple classes) on the instances for which (i) the learn-
ing set is not informative enough to smooth the effect of choice
of the prior density or (ii) the uncertainty arising from miss-
ing data prevents the reliable indication of a single class. As
on small data sets Naive Bayes Classifiers (NBC) may return
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prior-dependent classifications, leading to fragile predictions,
to deal with this problem, NCC2 specifies a set of prior den-
sities, referred to as prior credal set; the credal set is then turned
into a set of posteriors via element-wise application of Bayes
rule [13].

We used the Java implementation, named JNCC2, released
under the GNU GPL license and capable of processing ARFF
format files.

4.3. AdaBoost

AdaBoost, a diminutive for Adaptive Boosting [14], is an algo-
rithm for creating a “potent” binary classifier as linear combi-
nation of a simple one. Boosting decides the weak classifiers
and their weights based on the minimizing of loss function in a
two-class problem. Boosting is usually fast and has high perfor-
mance. As an interesting property of Adaboost, we can mention
the potential to reduce bias and variance from, for example, tree
based classifiers.

For the present work we used the MultiBoostAB made
available in Weka [12].

5. Classification experiment
This experiment evaluated the efficiency of the proposed sys-
tem. Given a set of features extracted form EP speech frames,
the system had to assign a class to each of the frames. The
classes considered were: Nasal Vowel, Oral Vowel and Others.

5.1. Database

A small database was created consisting of 2 parts:
First part consisted on 3 minutes of speech from an EP na-

tive speaker reading random news. Recording took place in a
normal office. Speech signal was recorded using 22050 Hz sam-
ple rate at 16 bit mono.

The second part consists on the speech recordings made
during ElectroMagnetic Midsagittal Articulography (EMMA)
acquisition for EP nasals. It is very rich in nasal sounds, par-
ticularly nasal vowels, and an example of noisy speech pro-
duced with articulations far from perfect. The database includes
recordings from two native EP speakers(one male and one fe-
male). Two speaking rate conditions were recorded: normal and
fast rate.

First part was manually annotated at segment level for all
produced sounds; the second part was not fully annotated: only
oral and nasal vowels segments and their context were contem-
plated.

Considering the frames (20 ms, no overlap), the database
has the following distribution: 6836 Oral Vowels, 9763 Nasal
Vowels and 43236 Others. If only the final 60% frames from
nasal vowels are kept, the number of frames from nasal vowels
decreases to 3377.

5.2. Metrics

For evaluation, we used 3 criteria: recall ratio (R), precision
ratio (P) and F-ratio (F): R = tp

tp+fn
, P = tp

tp+fp
, F = 2RP

R+P
,

being tp the number of true positives, fp the false positives, fn
the false negatives.

As we are only interested on two of the three classes (Nasal
and Oral vowels), values for R, P and F reported are averages of
this metrics calculated separately for each of the two classes.

5.3. Results

5.3.1. Classifiers comparison

We started our experiments by comparing the three classifiers
in a common setup, 10 fold cross validation. Besides classifier
effect, two other factors were considered: the balanced number
of examples for each class and the use or not of all the frames
from the nasal vowels. This resulted in 4 evaluation scenarios.
The inclusion of the second factor (discarding the initial frames
of nasal nasal) was motivated by reports claiming that they have
an initial oral (or oral like) phase. For NCC2 only determinate
classification (only one class selected) is considered. The re-
sults are presented in Fig. 1.

From the figure is clear that the best results were obtained
with the MultiBoost classifier. The SVM gave, in general, poor
results. For all classifiers the best performance was obtained
when combining the use for training of a balanced number of
samples of each class and the inclusion of only the frames from
the final 60% of the nasal vowels productions.

5.3.2. Evaluation of features subsets
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Figure 2: Results of the evaluation with the MultiBoostAB clas-
sifier on different subsets, and combinations of subsets, of fea-
tures. In all cases the training was performed with equal number
of examples for all classes and discarding initial part of nasal
vowels production.

The results for evaluation on different subsets of the fea-
tures (maintaining the results for ALL features as reference) are
presented in Fig. 2. Results on each of the four subsets mention
in 3 are complemented with the best results obtained on two and
three subsets combinations.

The best results for a single subset were obtained with the
“Others” subset, followed by the “Frequency” subset. Contrary
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Figure 1: Results for Recall, Precision and F-measure for the 3 classifiers when evaluated with all the features. The following test
variants were considered: all frames used (unbalanced number of samples for each class), named A; number of samples equal for the 3
classes (B); balanced with only the final 60 % frames from nasal vowels (C); unbalanced version of the previous (D).

to our expectations, the worst results were for the “Pruthi” sub-
set. As best results with only one subset is more than 5 % lower
than using all features, combinations were also evaluated. The
two best subsets work well when combined and constitute the
best combination of two subsets (Others+Frequency). The best
3 subsets combination is also formed by the classifiers on the
first 3 places when used alone. With these subsets the perfor-
mance is quite close to the one obtained with all features, inter-
estingly not including features of the “Pruthi” subset.

6. Conclusion
In this paper we investigated the usefulness of three classifiers
and several subsets features in the detection and classification
of speech frames from productions of EP oral and nasal vowels.
The classic SVM classifier was compared against the NCC2 and
MultiBoost classifiers. A small data set was used for classifiers
and features evaluation. Results point to the better performance
of MultiBoost in our experimental conditions. Also, the use
in the training process of equal number of examples for all the
classes and discarding frames from the initial parts of nasals
vowels contributes to better performances.

Overall, the best results obtained are inside the interval re-
ported in [5] for American English. But, contrary to [5], we
didn’t achieve good results with the SVM classifier.

Future research will include: experiments with other clas-
sifiers , features selection, adding a 3rd level of classification
to individualize the vowels, experiments on classifiers output
fusion and, our main goal, use of the detected frames in a
phonetic-based speaker verification system for EP.
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