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Abstract 

Although the research community pays little attention to 
(Inverse) Text Normalization (TN and ITN), this is an 
essential module in Text-to-Speech (TTS) and Speech 
Recognition (SR) systems. It has a significant development 
timeline and requires deep linguistic expertise. One of the 
main issues is ambiguity resolution, which is particularly 
problematic when handling numerals in different languages, 
especially those with gender or case variation. In this paper, 
we present a framework that can deal simultaneously with TN 
and ITN and which was applied to twelve different languages. 
The rules were tested and subsequently refined. The overall 
performance of the system is presented and discussed.  

Index Terms: (inverse) text normalization, text-to-speech, 
automatic speech recognition 

1. Introduction 

Text normalization (TN) is a core module in any speech 
synthesis or Text-to-Speech (TTS) system. As a part of text 
pre-processor, the text normalization module converts a raw 
text file, which contains non-standard words such as sequences 
of digital bits or abbreviations, into a well-defined sequence of 
linguistically-meaningful units. The same module can be also 
used by speech recognition systems (SR), where the module 
performs the same task but in the opposite way and the 
operation is called then Inverse Text Normalization (ITN). 

Text pre-processing is an essential part of any NLP 
system, since the characters, words, and sentences identified at 
this stage are the fundamental units passed to all further 
processing stages, from analysis and tagging components, such 
as morphological analyzers and part-of-speech taggers, 
through applications, such as information retrieval and 
machine translation systems [2].  

The usual approach for this is to use phonetic lexica, i.e., a 
list of entries and their respective orthographic expansion or 
immediate phonetic transcription. However, a list-based 
approach has a number of important drawbacks.  
First, a list-based approach is linear. So, to include all numbers 
up to a million, the same number of list entries would be 
required. More complex structures as dates, times, currency 
units, mathematical expressions and telephone numbers – 
which often have many possible orthographic representations 
– are even more problematic to cover exhaustively. 
A second issue is the problem of ambiguity for TN. A non 
rule-based approach hardly ever offers descriptions or 
solutions for the different cases of ambiguities in this module, 
and for which disambiguation rules need to be proposed. For 

example, while a native language speaker of Portuguese 
language might find it relatively easy to decide whether SPA

should be read as an acronym and therefore spelled out as 
Sociedade Portuguesa de Autores, or as an acronym and 
pronounced as a single syllable when it means Salutem per 

Acquam, this is not true of a computer application, which 
requires context information and rules to make such a 
decision. The same happens when with Roman numerals, such 
as I, V, X, C, D or M, which are written using letters and 
therefore cause ambiguities with acronyms. For example, a 
sequence like D. occurring in a text written in Portuguese may 
mean not only the number 500 but also Dom or Dona, 
depending on the context  
This problem is also related to the last disadvantage of list-
based text normalize. A simple list, when performing TN, is 
unable to resolve agreement between the item to be 
normalized and its context. In Portuguese, the number 1 can 
have a masculine or feminine readout, depending on the 
context; and for highly inflected languages like Finnish which 
has a system of 15 cases, the chance of having this kind of 
problem is even bigger.  

In this study, we created a rule-based multi-lingual 
TN/ITN algorithm and tested its performance over a number 
of languages from different families. 

2. Domains and issues of text 

normalization 

2.1. Domains of text normalization in Speech 

Synthesis and Recognition Systems 

The size of a text normalization module varies depending 
on its applications. A number of studies have defined objects 
of text normalization and identified characters of each object. 

Some previous works investigated the problems of named 
entity recognition in informally inputted texts and proposed 
improving the performance of personal name recognition in 
emails using two machine-learning based methods [6][1]. For 
email data cleaning, a cascaded approach by employing 
Support Vector Machines and rules has been proposed in [10]. 
While some studies pay attention to the case restoration 
problem [4][3][5],  others concentrated to the normalization of 
non-standard words in texts, including numbers, abbreviations, 
dates, currency amounts, and acronyms. They propose 
taxonomy of non-standard words and apply n-gram models, 
decision trees and weighted finite-state transducers to the 
normalization [8].  

Our approach to the text normalization focuses on the non-
standard words normalization. To do this, we first defined the 
categories of non-standard words to be normalized by our text 
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normalization module. Each of the categories can be described 
by its example as follow:  

� Cardinal (positive/negative numerals) 
o Integers of range 1 - 999: 2, -59 
o Integers of range 1,000 - 10,000: 5000, 

3,589 or 3589 
o Large integers : 301,020 or 301020  
o Decimals : 0.1, 0.03, 0.987 

� Ordinal: 1st, 2nd

� Roman Numbers: I, II, V  
� Date 

o Date expression by digits: 5/10/2000 
o Stand alone year: 1989, ‘89  
o Day and month: 5/10, 5-10 
o Month and year: 10/2000, 10.2000 
o Decade: 60’, 70’ 

� Time : time expression with a variety of signs (:, 
-, a.m., p.m., etc) 

� Fraction: ½, ¼, ¾ 
� Telephone Number 

o Local numbers: 555-1212 
o Local numbers with area code: (267) 

555-1212 
o Local numbers with country code: +1-

212-735-0989 
o International dialing: +31 24 323 5647 

� Measurement: 20l, 300km, 5m2

� Degree: 480° 
� Address 

o Street address line 1: 
Street number and name

o Street address line 2: Name of town, 

State (abbreviation) + ZIP code

o Optional street address line: any 

optional information  
o Post office box: P.O.BOX 1320 

� Currency 
o ISO Standard: 200$, $200 
o Subdivision of currencies: 1.75$ 

� Contact Names 
o (Honorific) Titles: Mr., Mrs., Dr. 

� URL/e-mail address: abc@12f3.net 
� Range expression for numerals and date: 1~20, 

5/10/2000~10/10/2000 

2.2. Language specific issues 

To normalize correctly all of the categories described 
above, a number of language specific issues must be 
considered.  
For example, in some West Germanic languages, numerals 
between 11 and 99 need a special attention for their specific 
word order. The following example illustrates the case of the 
Dutch language: 

Ex) 23:  drieëntwintig (3+and+20 in one word) 
        44:  vierenveertig (4+and+40 in one word) 

Moreover, in case of the French language, the expression of 
some numbers is made in a very particular way: 

 Ex)10 : dix  
      60: soixante 
      70: soixante-dix (60+10) 
      80 : quatre-vingts (4 times of 20) 

Also, as described briefly in the section 1, the gender 
distinction is very important for Romance languages and a part 
of Germanic languages. 
The forms and the expression of numerals get a bigger 
diversity when it comes to the telephone number: the number 
of units in a standard telephone number is different from a 
country to another and the way of reading a telephone number 
is also highly varied depending on the country.  
For example, a French standard telephone number is 
composed by 5 times of two unit numbers and all of them are 
read as tens. 

 Ex) 01 91 28 64 32  
: zéro un quatre-vingt-onze vingt-huit soixante-

quatre trente-deux 

Whereas a Korean telephone number must be read digit-by-
digit. 
 Ex) 361-2839  

: 삼(3)육(6)일(1)에(-) 이(2)팔(8)삼(3)구(9)  

In some languages, text normalization modules need to 
consider the phonetic context of items. For instance, in Italian, 
the common abbreviation for Saint (i.e. S.) should be 
normalized not only according to the gender of the saint's 
name: 

  
      Ex) S. Marco: San Marco ("Marco" is masculine) 
                S. Maria: Santa Maria ("Maria" is feminine) 
  

but also keeping into account if the name starts by vowels or 
not: 

  
Ex) S. Antonio : Sant'Antonio  
      ("Antonio" is masculine and begins with a vowel) 

                S. Anna:  Sant'Anna  
       ("Anna" is feminine and begins with a vowel)

  
Concerning to the context, another critical issue is that 

ambiguities in normalization are not always locally solvable, 
that is, it is not enough to look at the adjacent words to guess 
the correct normalization. In that sense, the item S., mentioned 
in the previous examples, can be a hard element to handle. 

  
Ex) S.S. Appia 7: Strada Statale Appia sette 

  
In this example, without a deep understanding of the word 

which follows S.S., a text normalization module may make the 
fatal mistake to get Santissima Appia sette or Santo Santa 

Appia sette instead of Strada Statale Appia sette. 
To handle all these issues, we built a rule-based TN/ITN 

module with possibilities of implementing and controlling the 
information about context.   

  

3. A Rule-based multi-lingual TN/ITN 

framework 

3.1. Structure and hierarchy of the rules 

We built, in 2.1, a list of domains of non-standard words.  
In our TN/ITN module, these domains will be associated with 
top-level rules, with each one being basically independent. 
Although the rules are self-referent and the domains intercross, 
the fact that they are top-level rules enables them to be 
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independent without being influenced by the behavior of other 
rules (except for cases where there are identical inputs.  

Text normalization rules are structured based on a 
language called TNML (Text Normalization Mark-up 
Language), which is an adaptation of SSML (Speech Synthesis 
Markup Language) for the TN module. SSML has been 
recommended by the W3C (World Wide Web Consortium) 
since 2004 and is currently one of the most commonly used 
mark-up languages.  
However, while the language is easy to understand, the sheer 
number of rules and constant referencing makes the process 
too intricate to be handled in a text editor. For this reason, we 
decided to make easier the process of writing down the text 
normalization rules by creating an internal tool that establishes 
a bridge between the rules and the language in which they are 
written. The TNML programming language and testing 
process presented in this paper are protected by patent (Patent 
Serial No. 12/361,114). 

Using this tool, we can create a TNML file that we call a 
“map”. The structure of a TN map is basically a tree-type 
scheme, with successive function-based references and 
positions. Four types of rules have been defined in TNML: 
terminals, sequence rules, list rules and top level rules. Thus, a 
map is composed by one or more top level rules and a top 
level rule possess one or more sequence rules, list rules and/or 
terminals. The characteristics of each rule are described in the 
following sections.   

3.1.1. Terminals 

Terminals are the elements placed at the bottom in the 
rules tree of a text normalization map. Terminals contain the 
information to be used during TN/ITN process and establish a 
one-to-one relation between a display form and a spoken form.  
For example, in case of the Portuguese language (see 1), we 
put the information that the numeral '1' must be normalized as 
um or uma is contained on the terminal level by making two 
different terminals, one with um and the other with uma, for 
one same item '1'.  
In French language’s case, some items may have a bigger 
number of terminals. 

Display Spoken 

4 Avril 

4 quarante 

4 quart 

4 quatorze 

4 quatre 

Table 1: Terminals related to the item ‘4’ in French 

All the other levels of rules are authored based on the 
terminals. In a rule which normalize numerals 0~9, the 
terminal 4�quatre will be used whereas a rule to normalize 
the date, especially the month, will need the terminal 4�Avril. 

3.1.2. List rules 

List rules represent their references in a vertical way. Their 
main characteristic is that they allow for only of the different 
available normalizations in the list. This allows for a grouping 
of the elements in a way that they can be reused or referenced 
by other rules where only one of the elements is selected. For 
example, the list rule shown in the Table 2 regroups a number 
of terminals of English language which may function in the 
same way.   

List rule name Composition (Terminals) 

Display Spoken 

Cardinal 1 to 9 1 one 

2 two

… … 

8 eight 

9 nine 

Table 2: A list rule

A list rule can be a direct constituent of a top level rule, a 
sequence rule or another list rule. 

3.1.3. Sequence rules 

Differently from the list rules which regroup terminals and 
rules of a same class, the sequence rules concatenate terminals 
rules by defining their order within a sequence. Given a 
terminal 3�thirty and the list rule shown in the Table 2, we 
can create a sequence rule which will normalize all the 
numerals between 31 and 39. 

Sequence rule name Composition Example 

Cardinal 31 to 39 (3�thirty)+(Card
inal 1 to 9) 

31� thirty one 
… 

39�thirty nine 

Table 3: A sequence rule

A list rule can be a direct constituent of a top level rule, a 
list rule or another sequence rule. 

3.1.4. Top level rules 

Top-level rules are the elements placed at the top in the 
rules tree of a text normalization map. All other rules run 
towards the top-level rules, which are the entry gate to a TN 
map. When starting a normalization process, the system 
always starts off by using a top-level rule. In other words, any 
terminal, list rule or sequence rule which is not included in a 
top level rule will not make any effect in the normalization. As 
such, all rules must directly or indirectly be associated with a 
top-level rule. 

 In our TN/ITN module, we built one top level rule per 
category (defined in 2.1).  

3.1.5. Other components 

In addition to the four types of rules described above, our 
TNML maps may contain some supplementary information 
such as: 

 - Spaces control between the constituents of a sequence 
rule. They can be toggled on or off. 

Name Display Spoken 

SpcToSpc <sp> <sp>

SpcToNo <sp> <ns> 

NoToSpc <ns> <sp>

NoToNo <ns> <ns> 

Table 4: Space control

In fact, in the sequence rule shown in Table 3, NoToSpc is 
applied between <3�thirty> and <Cardinal 1 to 9> and that’s 
how the rule could produce <31� thirty one> and not <31�
thirtyone>. 
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 - Priorities: Assuming a map for TN (used in speech 
synthesis) and ITN (used in speech recognition), priorities 
allow for assigning values to disambiguate identical 
expressions, by using a system of weight defined for each 
constituent of a list rule. 

 - Agreement: Agreements make it possible for the TN 
rules to bridge into an annotated lexicon and extract 
information from it to facilitate disambiguation in specific 
cases. 

3.2. TN/ITN framework applied to 12 languages 

The performance of our TN/ITN framework was tested for 
a number of languages from different language families. The 
languages are en-GB, de-DE, fr-FR, it-IT, pt-PT, ca-ES, es-ES, 
nb-NO, da-DK, nl-NL, sv-SE and ko-KR.  

To test the performance, a text normalization map was 
created. During the whole process of building and re-fining the 
text normalization map, 3 types of tests were carried out:  

-  Accuracy tests in internal tool 
-  Performance tests on a large sized text corpus 
-  Overall tests on a set of pre-selected items 

First, the accuracy tests in internal tool were performed 
during the coding and fine-tuning of rules. These are simple 
tests (input/output) normally associated with a top level rule. 
The purpose of these preliminary tests is to assess the 
functionality of the rules as they are being created, and to fix 
any small concatenation and referencing errors, such as extra 
or missing spaces, agreement issues, reference or structure 
errors, etc. 
Although the number might vary depending on the rule, a 
minimum number of nine cases have been established for each 
top-level rule. A few other cases were added to sub-rules in 
order to test their efficiency during the rule-writing process. 
The intended mark for these preliminary tests is a 100% 
accuracy rate. 

Second, the performance tests on a large sized text corpus 
assume the existence of a beta version of the text 
normalization map, with all domains finalized and preliminary 
tests completed. During these tests, TN/ITN rules are applied 
on corpus composed by 50,000~100,000 sentences, depending 
on the language and the nature of corpus, collected from 
various sources in order to obtain and analyze approximately 
20,000 normalized items. For example, to test the performance 
of European Portuguese map, a corpus of approximately 
60,000 random phrases was used.  
The goal of these tests is that our map recognizes any non-
standard word occurring in the raw text data and normalizes it 
correctly. After analyzing the results, the rules are reviewed 
again in order to add unexpected patterns and fix any errors 
found. By analyzing the errors, we could observe how our 
TN/ITN map works when it is combined with the other 
modules of a TTS or SR system. 

To finish, overall tests on a set of pre-selected items were 
made. A text data set composed by approximately 1,000 non-
standard words (distributed over the all domains defined in 2.1) 
was built. Differently from the corpus used for the previous 
performance tests, the data set built for the overall tests 
doesn’t contain any standard shape of sentence but only non-
standard words like 11/5/1989 for date or 378-2684 for 
telephone number. Each of those items has the (pre-defined) 
expected spoken form and the goal of the overall test is i) our 
TN/ITN map of the given language places a given item in the 
right category, ii) the rules applied to the item generate the 
correct expected spoken form for the given item and iii) the 

map works also correctly in the ITN direction (from the 
spoken form to the display form).  
After having run a first normalization, the errors were 
categorized, analyzed and fixed, and a final hit rate of a 100% 
has been achieved.  

3.3. Result and discussion 

For a text normalization module, it is a very hard task to 
get a 100% accuracy rate on an infinitely large corpus 
composed from various sources. There will always be word 
sequences or characters that contain unexpected problems for 
a phonemic conversion algorithm. Therefore, building and 
maintaining a text normalization module is inevitably work in 
progress and will always be a cyclic process.  

In this sense, our rule-based multi-lingual TN/ITN 
framework gave a reasonable result by getting a 100% success 
rate in the overall tests on preselected items. The result leads 
us to conclude that the rule-based approach provides solutions 
to ambiguities and contextual agreement, and allows a much 
higher level of exhaustiveness. However, it must be realized 
that reviewing and modifying the maps and the whole 
framework will remain necessary. 

4. Conclusion 

We built a rule-based multi lingual TN/ITN framework, in 
which maps for a number of languages were authored by a 
group of language experts. The performance tests of each 
language’s map provided satisfactory results.  

In the future, improvement of our module and enhanced 
accuracy are sought by focusing on a specific text domain: for 
instance medical text, bible texts, historical text, etc. It will be 
interesting to implement an auto-tuning function to refines the 
maps depending on the application (TTS, SR, or other 
application). We will also look for ways of reducing the size 
of maps without loss of performance or accuracy. 
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