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Abstract 
This paper describes the two Text-to-Speech (TTS) systems 
presented by Aholab-EHU/UPV in the Albayzin2010 
evaluation campaign. The first system is a statistical 
parametric TTS based on HTS, with the incentive of using our 
own vocoder. The other one is a hybrid system in which we 
try to take advantage of the consistency of the statistical 
averaging and the segmental naturalness of the unit selection 
approach. It uses the acoustic parameters generated by the 
statistical system as the target sequence during the unit 
selection process. Informal listening tests and some objective 
measures show that adding the Intonation Break information 
during the voice building process improves the performance of 
both systems. 

 
Index Terms: speech synthesis, statistical parametric, unit 
selection, evaluation 

1. Introduction 
The Albayzin TTS evaluation compares the performance of 
different TTS systems built with a common Spanish speech 
database. This year is the second edition of Albayzin, as well 
as our second participation in it. After seven weeks for voice 
building, participants are asked to synthesize several hundred 
test texts that will be evaluated to determine the quality of the 
synthetic voices in terms of: naturalness, similarity to the 
original speaker and intelligibility. 

AhoTTS [1] is the synthesis platform for commercial and 
research purposes that Aholab Laboratory has been developing 
since 1995. It has a modular architecture, and written in 
C/C++ it is fully functional in both UNIX and Windows 
operating systems. Up to this date, synthetic voices for 
Basque, Spanish (Albayzin2008 voice) and English languages 
have been created. 

This paper is organized as follows. First, we describe the 
two systems presented. In Section 3 the voice building process 
is explained. The evaluation results are presented and 
discussed in Section 4. And finally, some conclusions are 
drawn in Section 5. 

2. Systems Overview 
In order to take part in Albayzin 2010 evaluation, we have 
developed two TTS systems: an HMM-based system and a 
hybrid one [2] [3] [4]. Both systems share the linguistic 
analysis module. Besides, the parametric output of the 
statistical system is used as an input of the hybrid system. 
Therefore, instead of explaining each system on its own, a 
sequential analysis of the hybrid TTS synthesis process is 
going to be described in this section. 

The architecture of the hybrid is shown in Figure 1. In 
short, HTS [5] output is used as target prediction in the unit 
selection module. Pitch and duration predictions from HTS are 
combined with internal ones and spectrum parameters are used 
in order to calculate the distance between target and candidate 
units. Our hybrid approach tries to combine the robustness of 

the average modelling with the segmental quality of natural 
speech units. 

2.1. Language Processing 
This first module performs several language dependent tasks. 
Text normalization and grapheme to phoneme conversion are 
conducted by means of rules, whereas POS tagging uses a 
specific lexicon and some simple disambiguation rules. 
 

 
 

Figure 1: Hybrid TTS Architecture 

2.2. Speaker-dependent HTS 
Aholab had already built an HMM-based TTS system for 
Basque using HTS [6]. As HTS does not perform any kind of 
linguistic analysis, the output of the first module of AhoTTS 
had to be translated into proper labels containing phonetic and 
linguistic information. Taking into account that Basque 
language includes all the Spanish phonemes, only minor 
changes were necessary in order to adapt that system to 
Spanish (including the incorporation of Intonation Break 
feature (IB, see section 2.3.1)). The following features have 
been encoded into the context labels used by HTS: 
• Phoneme level: 

- SAMPA label of the current phoneme. 
- Labels of 2 phonemes to the right and 2 phonemes 

to the left. 
- Position of the current phoneme in the current 

syllable (from the beginning and from the end). 
- Position of the current phoneme after the previous 

pause and before the next pause. 
- Position of the current phone after the previous IB 

and before the next IB. 
• Syllable level: 

- Number of phonemes in current, previous and next 
syllables. 

- Accent in current, previous and next syllables. 
- Stress in current, previous and next syllables. 
- Position of the current syllable in the current word 

(from the beginning and from the end). 
- Position of the current syllable in the current accent 

group. 
- Position of the current syllable in the current 

sentence. 
- Position of the current syllable after the previous 

pause and before the next pause. 
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- Position of the current syllable after the previous IB 
and before the next IB. 

• Word level: 
- Simplified part-of-speech tag of the current, 

previous and next words (content/function). 
- Number of syllables of the current, previous and 

next words. 
- Position of the current word in the sentence (from 

the beginning and from the end). 
- Position of the current word after the previous pause 

and before the next pause. 
- Position of the current word after the previous IB 

and before the next IB. 
• Accent level: 

- Type of current, previous and next accent groups, 
according to the accent position. 

- Number of syllables in current, previous and next 
accent groups. 

- Position of the current accent group in the sentence 
(from the beginning and from the end). 

- Position of the current accent group after the 
previous pause and before the next pause. 

• Pause context level: 
- Type of previous and next pauses. 
- Number of pauses to the right and to the left. 

• Sentence level: 
- Type of sentence. 
- Number of phonemes. 
- Number of syllables. 
- Number of words. 
- Number of accent groups. 
- Number of pauses. 

 
In order to extract the framewise parametric representation 

of both the spectrum and the excitation, an HNM (Harmonics 
plus Noise Model) is used [7] that allows the reconstruction of 
speech too. 

2.3. Prosody Prediction 
This module performs several sequential tasks as IB insertion, 
duration prediction and intonation modelling. We have 
decided not to use our phrasing algorithm because its 
performance is still poor (too many false insertions that spoil 
the synthesis output). Therefore, we rely only on orthographic 
marks to assign phrase breaks. Nevertheless, thanks to the new 
IB prediction module, the absence of pause breaks in long 
word sequences is somehow alleviated. Besides, being the IB 
a more subtle phenomenon than the phrase break is, its miss-
insertions are also less disturbing. 

2.3.1. Intonation Break 

IB is an important phenomenon not only related to the 
intonation contour (e.g. F0 reset), but also to the duration (e.g. 
syllable lengthening) and acoustic realization (e.g. relaxed 
pronunciation) of phonemes adjacent to this event. As the 
corpus provided by the Albayzin organization included IB 
labels, we have built a CART that predicts their location from 
input plain text [8]. Among the features used to accomplish 
that goal, the following ones can be highlighted: POS in a 
three word window around current word, and the number of 
syllables, words and accent groups to previous and next breaks 
(IB or pause). The IB information is used in both prosody 
prediction and unit selection acoustic module at several unit 
levels (phoneme, syllable and word). 

2.3.2. Corpus Based Intonation 

Our unit selection intonation modelling uses the voiced 
phoneme as the basic unit in a similar approach to [9]. Such a 
small unit provides greater flexibility, although the 
concatenations of non consecutive units inside syllables are 
significantly restricted. We implement a generic Viterbi 
search to find the sequence of candidate units from the 
database that minimizes a function cost composed by the 
target and concatenation subcosts [10] as shown in the 
following equations: 
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Where ti are target units and ui candidate ones. CT and CC 
are the target and concatenation cost respectively; wj is the j-th 
weight of the P target subcosts and the Q join subcosts. The 
main features employed in the target function are these: Type 
of proposition, Type of Accent Group (AG), Segmental 
characteristics of neighbouring phonemes, Position (in the 
AGs, syllable, word and phonic group), Accent, Duration, IB 
boundary. 

Target weights are adjusted using a similar approach to the 
one proposed in [10] for acoustic unit selection. We first 
measure the pitch distance between units in the database and 
the relative distance regarding the adjacent voiced units. Then, 
we try to predict that distance as the summation of the target 
subcosts defined above, solving the weights as a multiple 
linear regression problem. 

When two intonation units are not consecutive in the 
corpus, the following join subcosts are calculated: Pitch 
difference at the join, Pitch difference among natural 
neighbours of the units to be concatenated. 

Join weights are manually assigned and some 
penalizations are added in order to hinder the concatenation of 
non consecutive voiced units inside a syllable, and to a lesser 
extent, inside an AG. Finally, the intonation contour is 
combined with the one predicted by the MSD-HSMM (multi-
space distribution hidden semi-Markov models) modelling 
output from HTS. We just perform a weighted linear 
combination of both pitch contours, after phone alignment and 
interpolation in unvoiced regions. That way, we try to take 
advantage of the consistency of the statistical averaging and 
the segmental naturalness of the unit selection approach. 

2.3.3. Duration 

CART zscore duration models were trained for voiced and 
unvoiced consonants, whereas Random Forests [11] were 
preferred for the vowels. In both cases, the same features were 
used: phoneme characteristics in a five phoneme window, 
stress, position (in syllable, word, IB and sentence), simplified 
POS, etc. Once again, the durations are combined with the 
ones predicted by HTS.  

2.4. Acoustic Engine 
Our acoustic engine performs the usual steps in a corpus-
based concatenative system: pre-selection of candidate units, 
a dynamic programming step combining weighted join and 
target costs, and a concatenation step joining the selected 
units to form an output speech waveform. Halfphones are 
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selected as the basic unit because of the flexibility they 
provide to form longer units. 

In our hybrid approach, the spectral parameters generated 
by the statistical parametric synthesis are used as the target 
during the unit selection process, combined with prosody and 
linguistic features. 

2.4.1. Unit Selection 

Target cost function (2) is divided in various subcosts which 
are calculated at the halfphone level: Phoneme context, Pitch 
and its slope, Duration, Accent, Type .of proposition, Position. 
A new subcost is added for the Hybrid System: 

• Spectral Distance: Frame based Euclidean distance 
between target (HTS output) and candidate units after 
DTW [12] alignment. The distance is manually 
weighted according to three reduced phonetic classes: 
vowels, voiced and unvoiced consonants. 

The concatenation cost function (3) is composed of seven 
subcosts, all but the inter-syllable pitch range being only 
computed for non-consecutive units: Pitch, Inter-syllable pitch 
range, Duration, Power, Spectrum, Voiceness, and 
Penalizations depending on the transition type. 

Target weights are adjusted solving a multiple linear 
regression problem, as stated previously for the pitch 
modelling. The Euclidean distance of MFCC parameters is 
used as the predictee and the subcosts as the predictors. 
Different weights are estimated for left and right halfphones 
and for each phoneme type. Concatenation weights and α from 
equation (1) are adjusted manually. 

2.4.2. Waveform Generation 

The selected candidate units are joined using glottal closure 
instant information to get smooth concatenations. It is well 
known that prosody modifications reduce the overall natural 
quality of the voice. Therefore, only minor prosody 
modifications are done by means of pitch synchronous overlap 
and add techniques. The energy is smoothed over non 
consecutive halfphone transitions and a gain contour is applied 
in order to normalize the amplitude in the middle of each 
phoneme. 

3. Voice Building 
Organizers provided a medium sized (two hours long) speech 
database [13] recorded at University of Vigo by a male voice 
talent. The database consists of 1217 phonetically balanced 
sentences, automatically extracted phone segmentation and IB 
labels. 

The voice building process involves several sequential 
tasks that are performed almost automatically. After 
segmentation labels are ready, linguistic and acoustic features 
are extracted and then, unit selection databases and prosody 
models are built and weights are trained. The training process 
of the statistical parametric voice is automatically done, once 
proper questions to build the trees are set. 

3.1. Segmentation 
Although the organizers provided segmentation labels, we 
decided to segment the whole corpus again with HTK toolkit 
[14]. Before doing so, transcriptions of some foreign words 
were manually corrected (e.g. West Side Story, pronounced 
by the speaker as B.w.e.s.t-s.a.j.T-e.s.t.o.r.i). Then, tied-state 
triphone models were trained and new labels obtained by 
means of forced alignment. Finally, pause boundaries were 
automatically refined with a simple processing based on 

phone duration and energy threshold. No manual revision of 
the segmentation labels was done. 

3.2. Feature Extraction 
All the language related features were extracted from our 
linguistic processing module. The extraction of the acoustic 
features consists of several steps. First, power normalization is 
performed by measuring the mean power in the middle of the 
vowels for all the sentences, and then normalizing each inter-
pause interval. Then, pitch contour is detected combining 
three different methods in order to avoid gross errors (our own 
PDA (Pitch Detection Algorithm) [15], get_f0 from Snack 
Toolkit and Praat). HTK is used to generate 13 MFCC 
parameters calculated with a fixed 5ms frame. As far as the 
HTS training is concerned, the following parameters are 
extracted: f0 + 40 MFCCs. 

3.3. Impact of IB information 
As we had never used IB information during the voice 
building, a shallow analysis of its impact has been done. 
Questions related to IB appear in the upper third of all trees 
trained with HTS: duration, logF0 and MGC (Mel Generalized 
Cepstrum). The same can be said for the Hybrid TTS: the 
correlation of the duration prediction improves and IB 
information is taken into account in the trained weights for 
prosody and acoustic module (especially at phoneme level and 
for vowels). Informal listening also revealed that including the 
IB information had a positive impact in the performance of 
both systems. 

4. Evaluation Results 
Each listener completed three evaluation tasks: (i) Mean 
Opinion Score (MOS) to measure the similarity with the 
original voice, (ii) naturalness MOS, (iii) and an intelligibility 
test in which evaluators were asked to transcribe the 
Semantically Unpredictable Sentences (SUS) they heard. Up 
to 132 listeners completed the whole test. These were their 
main characteristics: 44% were experts on speech 
technologies, 92.5% were native speakers and 82% used 
headphones. Ten synthetic systems took part in the evaluation 
(identified with letters B-G). Natural voice (letter A) was also 
evaluated in order to fix the ceiling score. 

In the present section detailed results are shown for our 
two systems in each of the three evaluation tasks. Unless the 
contrary is expressed, results from all listeners are analyzed. 
System ranking or grouping is based on the pairwise Wilcoxon 
test provided by the organization [16], which is a useful tool to 
know whether differences among systems are statistically 
significant or not. 

4.1. Similarity Test 
It measures the similarity to the original voice in a likert type 
scale ranging from 1 (Sounds like a totally different person) to 
5 (Sounds like exactly the same person). The results for all the 
listeners are shown in Figure 2, whereas results for different 
groups of evaluators are displayed in Figure 3. 

4.1.1. Hybrid-TTS 

Our Hybrid system (letter D) obtained the best results (4.07 
MOS) together with system I. That ranking remains constant 
for the different listeners’ characteristics, although the expert 
evaluators scored our system a litter higher than the non-
experts (4.19 and 3.99 respectively). Being our system a 
concatenative one (i.e. concatenates segments of natural 
speech) this high similarity to the original speaker could be 
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expected. However, listeners tend to score not only the 
segmental similarity but the supra-segmental one (prosody), 
and concatenation artifacts may play an important role in the 
subjective evaluation too. In any case, there is still a 
significant performance gap with respect to the system A (4.83 
MOS). 
 

 
Figure 2: Similarity to the original voice, all listeners. 

4.1.2. HTS-based system 

Our system (letter F) gets a MOS of 2.91, and it shares not 
significant differences with a group of 5 systems (H, K, E, J 
and C). It seems that the vocoding nature of the system has 
slightly degraded the similarity to the original voice. 
Nevertheless, we think that this section of the test is the least 
important one for typical TTS applications. Besides, it must be 
stated that the scoring is almost the same for both expert and 
non-expert evaluators (and the same occurs in the second 
evaluation task). 
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Figure 3: Similarity to the original voice, different groups. 

4.2. Naturalness Test 
It measures the naturalness of the systems in a likert type scale 
ranging from 1 (Completely Unnatural) to 5 (Completely 
Natural). The results are displayed in Figures 4 and 5. 

4.2.1. Hybrid TTS 

Our Hybrid TTS is significantly more natural than the rest of 
synthetics systems, with a 3.71 MOS. Once again, the scoring 
of expert evaluators (3.89) is higher than the one from non-
experts (3.69). And the gap is even larger between listeners 
that used headphones (3.86 MOS) or loudspeakers (3.4 MOS). 
We think that the hybrid approach has succeeded in 
improving the consistency that unit selection systems usually 
lack. Just one bad join or incorrectly labeled unit can spoil a 
whole sentence. Introducing the spectral output of the HMM-

based system in the unit selection algorithm has alleviated that 
problem. Besides, combining two prediction methods 
produced a more robust prosody. 
 

 
Figure 4: Naturalness, all listeners. 

4.2.2. HTS-based system 

Our statistical system obtained a MOS of 3.15, ranking as the 
fourth best TTS in this task, together with system E. The 
robustness of the statistical averaging in the modelling process 
has yielded quite good results. And the same can be said as far 
as the performance of our own vocoder is concerned. 
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Figure 5: Naturalness, different groups. 

4.3. Intelligibility Test 
The organizers computed Word Error Rates (WER) for SUS 
as a measure of intelligibility. Unfortunately, no natural 
speech stimuli were available during the test due to the special 
structure of sentences needed. So it was not possible to make a 
comparison between synthetic and natural speech. 

Non-native listeners might have introduced some noise in 
the evaluation (i.e. word errors due to their insufficient 
knowledge of the language). Therefore, they were not taken 
into account in the results presented here and displayed in 
Figure 6. Figure 7 shows WER for different listeners’ groups. 

4.3.1. Hybrid TTS 

It achieved a WER of 17%, obtaining the best results together 
with systems E, B, J and F. The Hybrid approach seems to 
have alleviated the problems caused by labeling errors or 
poorly pronounced units, yielding a good performance. 

4.3.2. HTS-based system 

It managed a WER of 16%, obtaining the best results together 
with systems E, B, J and D. As happened in Albazyn2008 

FALA 2010 - VI Jornadas en Tecnología del Habla and II Iberian SLTech Workshop

-346-



evaluation campaign, statistical modelling has yielded a pretty 
robust performance. 
 

 
Figure 6: WER, native listeners. 
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Figure 7: WER, different groups. 

5. Conclusions 
This has been our second participation in the Albayzin TTS 
evaluation campaign. Two synthetic voices have been built 
this year. One the one hand, an HTS-based TTS with a 
vocoder based on a parametric representation extracted from 
an HNM analysis. On the other hand, a Hybrid system that 
tries to combine the strong points of statistical and unit 
selection synthesis (i.e. robustness and segmental naturalness 
respectively). During the voice building process we introduced 
a feature we had never used so far: IB. We believe that its 
inclusion had a positive effect in the performance of both 
TTSs. 

The Hybrid system got the best results (alone or together 
with other systems) in all the three sections of the evaluation, 
for experts and non-expert listeners. Those were very 
promising results, being this our first attempt to build a hybrid 
TTS. The HTS-based system scored pretty well too, above 
average in all sections but the first one. 

A considerable gap between natural and synthetic voices 
still exists, but hybrid approaches seem to be an appropriate 
way to try to make the margin smaller. 
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