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Abstract

This paper describes the 2 systems submitted by ViVoLab UZ
for the Albayzin 2010 Language Recognition Evaluation (LRE)
[1]. Both submissions are a fusion of 5 phonotactic and 3 acous-
tic subsystems. The only difference between them is the nor-
malization and fusion of the scores. We have investigated the
state-of-the art methods for Language Recognition (LR) in the
KALAKA-2 database [2]. Our group obtained the first position
in the evaluation.

Index Terms: language recognition, phonotactic LRE, acoustic
LRE, channel compensation, discriminative training

1. Introduction
Language Identification (LID) has experimented a huge
development in the last years. To compare the quality of
the different LR systems around the world, NIST has coordi-
nated several evaluations (1996, 2003, 2005, 2007 and 2009)
[3]. In year 2008, the Spanish Network on Speech Tech-
nology coordinated a similar one, for research groups of the
Iberian Peninsula [4]. Albayzin LRE 2010 is the second edi-
tion. The main difference with NIST is that the languages to
be recognized are Spanish, Catalan, English, Basque, Galician
and Portuguese, and they are extracted from multi-speaker TV
broadcast recordings.

The systems submitted by ViVoLab UZ are a fusion of
5 phonotactic subsystems and 3 acoustic subsystems. Both
systems are identical except for the normalization and fusion
methods used at the back-end. In the first submission, we make
a t-norm of scores and perform a discriminative fusion. In the
second, we make a zt-norm of scores, and follow a genera-
tive gaussian backend by a discriminative calibration. Our sub-
mission includes closed- and open-set condition for the clean
speech task, for the 3s, 10s and 30s tests.

The thresholds for each submission are set separately for
each condition and for each duration of file, detecting the length
of each one by counting the number of frames. For the closed-
and open-set conditions, we have used the same systems, but
setting the threshold to different values in order to minimize
Cavg .

The rest of the paper is organized as follows: Section 2
specifies the data used for training; Section 3 describes the
acoustic, phonotactic and fusion methods; Section 4 indicates
the computational cost of the systems; in Section 5, results ob-
tained in the evaluation are analysed; and Section 6 gives the
conclusions and comments some next steps.

2. Data and Performance Measurement
The data used for training our system come from the training
part of KALAKA-2 database, with the exception of the training
of the phone recognizers. We have used phoneme recognizers
trained in Czech, with the Czech SpeechDat-E database [18], in
Hungarian, with the Hungarian SpeechDat-E database [19], in
Russian, with the Russian SpeechDat-E database [20], in En-
glish, with the TIMIT database [21], and in Spanish, with the
Albayzin [22] and Speech Dat Car [23] databases.

Calibration of the results was performed with the develop-
ment data of KALAKA-2 database.

3. System Description
The 2 submitted systems are a fusion of 8 subsystems: 3 acous-
tic and 5 phonotactics

3.1. Features

The features used for the acoustic systems are MFCC concate-
nated to their Shifted Delta Cepstra Coefficients (SDC) [5]. We
obtain 6 MFCCs plus energy, perform cepstral mean normaliza-
tion, and then we calculate the SDC with a 7-1-3-7 configura-
tion. After that, we transform the features with a Short Time
Gaussianization (STG) [6].

3.2. Acoustic Systems

The 3 acoustic subsystems are a GMM Maximum Likeli-
hood (ML) subsystem, a GMM Maximum Mutual Information
(MMI) subsystem and a GMM Factor Analysis (FA) subsystem
which performs channel compensation.

3.2.1. GMM ML subsystem

The ML GMM subsystem is based on a calculation of one ML
GMM model for each language using the EM algorithm. We
perform 10 iterations to obtain a 2048 gaussians model. This
method tries to maximize the likelihood of the data for each
class.

3.2.2. GMM MMI subsystem

Starting from the GMM ML model, we perform a discrimi-
native re-training based on MMI to obtain the final models.
10 iterations of MMI re-training are run. Unlike the ML
training, this method tries to maximize the posterior probability
of recognizing all training utterances given the labelled data.
The objective function is [7]
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zMMI(λ) =

R∑
r=1

log
pλ(χr|sr)

KrP (sr)
Kr∑

∀s pλ(χr|s)KrP (s)Kr
(1)

where pλ(χr|sr) is the likelihood of r-th training segment, χr ,
given the correct language identity of the segment, sr , and
model parameters λ. R is the number of training segments,
and the denominator represents the overall probability density,
pλ(χr). We consider the prior probabilities of all classes equal
and drop the prior terms P (sr) and P (s). Usually, segment
likelihood pλ(χr|s) is computed as simple multiplication of
frame likelihoods incorrectly assuming statistical independence
of feature vectors. Factor 0 < Kr < 1, which is increasing
the confusion between hypothesis represented by numerator and
denominator, can be considered as a compensation for underes-
timating segment likelihoods caused by this incorrect assump-
tion.

3.2.3. GMM FA subsystem

This system is based in a FA for the mean of the models
based on [8], in which we have defined two factors, one for
the language and one for the channel. Thus, we can obtain a
channel compensated model for each language. This is a two-
level hierarchy model, since we assume a different GMM that
generates every speech segment, and we also assume that for
every speech segment, this GMM has been generated by a sub-
model. Then, for the speech segment s, we have

Ms = tl(s) + Uxs (2)

where tl(s) are the language location vectors, xs is a vector
of C segment-dependent channel factors, and U is a 56-by-
C factor loading matrix, which translates the channel factors
from their low dimensional space to the high dimensional space
where the model Ms lies.

The tl(s) matrix is obtained by MAP adaptation from a
UBM model with mean m0 and covariance matrix Σ, in the
following way

tl(s)k =

∑
s fsk

τ +
∑
s nsk

(3)

being nsk and fsk the zero and first order statistics respectively,
for the kth gaussian component.

The U matrix and the channel factors are calculated
according to a ML criterion, using the EM algorithm iteratively,
in a similar way to [8].

The scoring of each utterance is made via a linear scoring,
as proposed in [9].

3.3. Phonotactic Systems

5 PRLM sub-systems [12] in different languages have been
fused. 4 of them use the Brno University of Technology
(BUT) phoneme recognizer, based on ANN/HMM and Tempo-
ral Patterns (TRAPS) with Split Temporal Context (STC) [10],
and are trained on Czech, Hungary, Russian and English. The
other one uses the phoneme recognizer of the UZ, which is
based on GMM/HMM with conventional MFCC and is trained
on Spanish. In this one, the phonemes are taken with right and
left context, so we will call the recognition unit subphoneme
instead. However, we will keep only the central unit for the
posterior step, that is, the phoneme without context. The output
phonemes are used to train a langauge model (LM) for each one
of the target languages with the SRILM tool [11].

All LMs are built with an interpolated Witten-Bell dis-
counting method. We use 4-grams for building them in all cases,
and for testing we also use 4-grams for all cases except for the
Spanish LM, in which we test with 3-grams. The reason is
that we empirically experimented a better performance with this
configuration. In addition, for the four phoneme recognizers
based on GMM/ANN, we make use of lattices [13] to get more
information out of the acoustic signal. Specifically, we create a
100-best list for the train and a 5-best list for the test.

3.4. Fusion for the Primary Submission

In our primary submission, the results coming from each system
are T-Normalized [15], fused, and for the closed-set condition,
another T-Normalization is applied after the fusion. The fusion
is also a calibration [14] and the fused log-likelihood vector is

l′(xt) =

K∑
k=1

αklk(xt) + β (4)

where the coefficients αk and β are calculated via a discrimina-
tive Linear Logistic Regression (LLR) training, using the FoCal
Multi-class toolkit [14], and lk(xt) is the output of system k
when input in time t is xt.

3.5. Fusion for the Alternative Submission

In this submission, we investigate the ZT-Normalization
[15] technique, combined with a Gaussian Back-End (GBE)
followed by a discriminative LLR fusion [14], as the one in the
primary submission. In the closed-set condition, results after
the GBE and after the LLR fusion are again T-Normalized.

In a GBE, the likelihood scores are obtained from multi-
variate Gaussians, with target language specific means and one
common full covariance matrix. As explained in [16], the GBE
can be seen as an affine transformation. The linear part of the
transform is the same as a Linear Discriminant Analysis (LDA)
transform, which tries to maximize the ratio of between-class
to within-class variance. The translation part of the affine trans-
form is equivalent to the calibration task of setting language de-
pendent thresholds. The decision made by the GBE corresponds
to the following normal distribution function:

δl(x) = (x− µl)tΣ−1(x− µl) (5)

where µl is the mean for language l, Σ is the common covari-
ance matrix, x is the input score and δl(x) is the transformed
output.

The posterior discriminative LLR was added to give further
calibration to the system, and we could check a further improve-
ment in the results.

4. Computational Cost
Real time factor was approximately 0.9xRT for both
submissions, since the normalization and calibration technique
does not alter the overall processing time.

5. Analysis of Results
In this section we will show the results obtained in the evalua-
tion for the described systems in terms ofCavg . We can see how
accurate is the calibration on the DET curves comparing Cavg
(marked with ’x’) with C∗avg (marked with ’o’). To analyse re-
sults, we will focus on the the primary system, since the results
of the alternative system follow the same trend but with higher
error rates.
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5.1. Primary System - Closed Clean (CC)

In Fig. 1 we have the results of our primary system for the clean
speech, closed set condition, for 30, 10 and 3 s of duration of
utterance. Cavg is 0.0184, 0.0418 and 0.0943, respectively. The
30s test of this condition is the one used to rank systems in the
evaluation. Our system was the best.

  0.1   0.2  0.5    1     2     5     10    20    40  
  0.1 

  0.2 

 0.5  

  1   

  2   

  5   

  10  

  20  

  40  

DET Curve − Primary − CC − 3s (green), 10s (blue), 30s (red)

False Alarm probability (in %)

M
is

s 
pr

ob
ab

ili
ty

 (
in

 %
)

3s

10s

30s

Figure 1: DET Curves for Primary System CC condition

Pfa(Lt, Ln) Target Language Lt
Ln SPA CAT ENG BAS GAL POR
SPA – 0.016 0.000 0.000 0.232 0.000
CAT 0.020 – 0.000 0.000 0.007 0.007
ENG 0.000 0.000 – 0.000 0.000 0.000
BAS 0.000 0.000 0.000 – 0.000 0.000
GAL 0.413 0.016 0.000 0.000 – 0.000
POR 0.000 0.000 0.000 0.000 0.000 –
Pmiss(Lt) 0.008 0.013 0.000 0.008 0.050 0.000
Avg. Pfa(Lt) 0.087 0.006 0.000 0.000 0.048 0.001
Avg. Pmiss = 0.0131
Avg. Pfa = 0.0237

Table 1: Error Rates for CC 30s condition in the primary sys-
tem. We show the target language Lt in the columns and the
segment language Ln in the rows. Labels of languages are
SPA=Spanish, CAT=Catalan, ENG=English, BAS=Basque,
GAL=Galician and POR=Portuguese

If we analyse Table 1, we can see a very good performance
recognizing all languages for the 30s CC condition, having a
global Pmiss of 0.0131. The highest figure is for Galician
with a Pmiss of 0.050. However, if we look at the false-alarm
probabilities, we can check in general a good performance, but
a low one when discriminating between Spanish and Galician.
The false-alarm probability of saying that the language trans-
mitted is Galician when it is really Spanish is 0.232 and of
saying that it is Spanish when it is really Galician is 0.413.
Several reasons could be considered for this behaviour, but

we think that the most dramatic is, after listening some of the
recordings, the fact that many Galician speakers are Spanish-
native speakers. Therefore, their Galician accents are very in-
fluenced by the Spanish language.

The problem caused by people who speak several languages
is a general one for language recognizers, and it would be
beneficial to have into account this information when training
LID systems. One solution could be to train systems for na-
tive and non-native speakers as different languages. Another
approach to this problem could be to apply discriminative
training techniques which place more gaussians (in GMM sys-
tems) at the borders between these languages for a better
characterization of these areas of the vector space.

For the rest of languages, we can see small confusion rates,
especially for English and Basque, which are 0. This is due
to the highly different acoustic and phonotactic nature of these
languages with regard to the others.

We detail the results for each individual subsystem for the
30 s condition in Table 2. We can see that the subsystem that
performs the best is the FA. On the other hand, the PRLM ES
and PRLM EN do not give good results by themselves. After
evaluation, we could check that the back-end was not optimum,
and with only a GBE we obtained great improvements in all
subsystems.

Subsystem Cavg
JFA 0.0357
ML 0.0855

MMI 0.0598
PRLM CZ 0.0569
PRLM HU 0.0501
PRLM RU 0.0547
PRLM EN 0.2618
PRLM ES 0.1474

Table 2: Cavg for the individual subsystems of the primary sub-
mission for the CC 30s condition

5.2. Primary System - Open Clean (OC)

In Fig. 2 we have the results of our primary system for the
clean speech, open set condition, for 30, 10 and 3 s of duration
of utterance. Cavg is 0.0307, 0.0644 and 0.1202, respectively.

In Table 3 we can check that the performance of the sys-
tem for the 30s OC condition has slightly dropped, compared
to the CC condition. This is due to the introduction of out-of-
set (OOS) languages. The average Pmiss drops to 0.0193, but
more dramatic is the decrease in the average Pfa, which drops
to 0.0422, i.e. a relative decrease of 79% compared to the 30s
CC condition.

We still observe the problem when distinguishing Spanish
of Galician. And now, we can see that the OOS languages
are mainly confused with English, with a Pfa(EN,OOS) of
0.188.

The results for the individual subsystems for the 30 s con-
dition are in Table 4. Again, the system that performs the best is
the FA. In this case, the difference with the rest is much higher.
However, we have to take into account that our system was
tuned for the fusion of all subsystems and not for each indi-
vidual one. If we tuned it for each one, we would obtain better
results. As in the CC case, we could check after evaluation that
the back-end was not optimum.
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Figure 2: DET Curves for Primary System OC condition

Subsystem Cavg
JFA 0.0510
ML 0.3658

MMI 0.3262
PRLM CZ 0.4499
PRLM HU 0.3998
PRLM RU 0.4293
PRLM EN 0.4991
PRLM ES 0.4920

Table 4: Cavg for the individual subsystems of the primary sub-
mission for the OC 30s condition
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Figure 3: DET Curves for Alternative System CC condition

Pfa(Lt, Ln) Target Language Lt
Ln SPA CAT ENG BAS GAL POR
SPA – 0.008 0.000 0.000 0.208 0.000
CAT 0.0134 – 0.000 0.000 0.000 0.000
ENG 0.000 0.000 – 0.000 0.000 0.000
BAS 0.000 0.000 0.000 – 0.000 0.000
GAL 0.446 0.008 0.000 0.000 – 0.000
POR 0.000 0.000 0.000 0.000 0.000 –
OOS 0.026 0.064 0.188 0.052 0.003 0.094
Pmiss(Lt) 0.024 0.013 0.007 0.008 0.050 0.013
Avg.Pfa(Lt) 0.092 0.003 0.000 0.000 0.042 0.000
Avg.Pfa(Lt + Lo) 0.066 0.028 0.075 0.021 0.026 0.038
Avg. Pmiss = 0.0193
Avg. Pfa = 0.0422

Table 3: Error Rates for OC 30s condition in the primary sys-
tem. We show the target language Lt in the columns and the
segment language Ln in the rows. Labels of languages are
SPA=Spanish, CAT=Catalan, ENG=English, BAS=Basque,
GAL=Galician, POR=Portuguese and OOS=Out-Of-Set

5.3. Alternative System - CC

In Fig. 3 we have the results of our alternative system, for the
clean speech, closed set condition, for 30, 10 and 3 s of duration
of utterance. Cavg is 0.0238, 0.0498 and 0.1087, respectively.
The detail analysis of results is similar to the primary system
CC condition, but the error rates are higher.

5.4. Alternative System - OC

In Fig. 4 we have the results of our alternative system, for the
clean speech, open set condition, for 30, 10 and 3 s of duration
of utterance. Cavg is 0.0373, 0.0635 and 0.1309, respectively.
The detail analysis of results is similar to the primary system
OC condition, but the error rates are higher.
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Figure 4: DET Curves for Alternative System OC condition
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6. Conclusions and Future Work
In this edition of Albayzin LRE, ViVoLab UZ participates for
the first time in a Language Recognition Evaluation. We have
built several state-of-the-art systems that have been tested in the
KALAKA-2 database. All these systems are fusioned into one,
in which the characteristics of each are combined to get a higher
performance. For the ranking of systems only the primary sub-
mission of the CC 30s condition was considered and our system
was the best of all participant sites.

First, we built 5 phonotactic systems trained in different
languages using 2 phoneme recognizers, one of BUT and one
of UZ. Then, we combined them with 3 acoustic systems, ML,
MMI and FA, coming from the Speaker Identification (SPKID)
ideas, where our group has big experience.

Finally, we normalized and fused the results in two different
ways, what generates our two submissions. One is based on a T-
Norm and a discriminative LLR fusion, while the other is based
on a ZT-Norm and a GBE followed by a discriminative LLR
fusion.

Analysing the results, and focusing on the 30s CC condi-
tion, we can see very low Pmiss values and, in general, low Pfa
values. However, we detect a great confusion between Spanish
and Galician, mainly caused by the fact that many Galician
speaker are non-native speakers and their accent is influenced
by the Spanish language. To solve this, we should think of
having into account if the speaker is native or non-native when
training the systems, and of turning our efforts to build a dis-
criminative algorithm able to differentiate properly the borders
between these languages.

As next steps we consider including several other
approaches to our final system. First, the introduction of Vocal
Tract Length Normalization (VTLN) should make the features
more independent of the speaker. Secondly, we will experiment
with a Probabilistic Linear Discriminant Analysis (PLDA) sys-
tem on LID, since the performance on SPKID has shown to be
excellent [17]. And finally, we would like to continue investi-
gating new normalizing techniques, as one only based on the
length of the files under test. In addition, we checked in a post-
evaluation of the systems, that the selected configurations for
the back-end were not optimal, and that only a GBE could have
given a better performance.
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