
AhoLab Speaker Diarisation System for Albayzin 2010

Iker Luengo, Eva Navas, Ibon Saratxaga, Inmaculada Hernáez, Daniel Erro

Dpt. of Electronics and Telecommunications
University of the Basque Country

{iker.luengo, eva.navas, ibon.saratxaga, inma.hernaez, daniel.erro}@ehu.es

Abstract

This paper presents the speaker diarisation system pre-
sented by Aholab Signal Processing Laboratory to the Albayzin
Speaker Diarization Challenge 2010. The system was built to
run on-line, without any recording of the audio data to produce
its output. As a result, the whole process must be done in a
single iteration, which prevents the use of many optimisation
processes that are usually implemented in diarisation systems.
In order to minimise the reduction of the accuracy in the out-
put and to maximise computational efficiency, the applied al-
gorithms were carefully selected and some new modifications
were implemented.
Index Terms: speaker diarisation, BIC, on-line audio process-
ing

1. Introduction
The aim of speaker diarisation is to detect speaker changes in an
audio recording, and to identify which of the resulting speech
segments come from the same speaker. That is, the task is to
detect ‘who speaks when’.

The process is usually divided into different subtasks, each
of them dealing with a specific subproblem. Typically the sub-
tasks include speech detection, speaker segmentation, cluster-
ing and resegmentation of the audio stream. Usually these sub-
tasks are executed one after another, as a series of processing
steps, i.e., each subtask is applied to the whole audio recording
before starting the next one. This architecture implies having
the whole audio recording available for several processings, and
also that no result can be obtained until the recording is finished.

Against this off-line architecture, we propose an on-line al-
gorithm for speaker diarisation, which is capable of performing
the whole process in a single iteration. Such algorithm can work
with direct audio input or audio streaming, without needingto
record it. Furthermore, it is more efficient in terms of execution
time and memory requirements. Nevertheless, some accuracy
loss is expected, as the system can only rely on past audio sam-
ples to make decisions, and not future ones. Also the impos-
sibility of using multi-pass or iterative algorithms may provide
suboptimal results.

2. Speaker diarisation: a short overview
2.1. Speech detection

This step is necessary in order to discard audio segments with-
out speech, thus making the following steps easier and less er-
ror prone. Depending on which environment the system is go-
ing to operate, non-speech segments can contain a large variety
of acoustic events: silence, noise, music, applause, shouting,
etc. The most common approach is to make a Viterbi segmenta-

tion with GMM models trained on labelled data, although some-
times more elaborate models such as multistate HMM are used.

It is possible to use only two models (one for speech
and another one for non-speech), although it is convenient
to train more specific models when different acoustic events
are expected. Often models for noise, music, clean speech,
speech+noise and speech+music are used [1], but it is also pos-
sible to train separate models for male and female speech or to
differentiate wideband and narrowband speech [2]. This way
the detection accuracy is improved, assuming there is enough
training data.

2.2. Speaker change detection

This is a critical step in the diarisation process. Once the seg-
ments without speech are discarded, the locations of the speaker
changes must be located. Almost every diarisation system per-
forms this step calculating a distance metric between two ad-
jacent audio windows. If the distance is larger than a given
threshold, a speaker change is assumed between both windows.
The differences among specific algorithms lie in the choice of
the distance metric and the windowing scheme.

One of the most widely used metric for change detection
is the Bayesian information criterion (BIC) [3]. BIC is a likeli-
hood criterion penalised by the model complexity, and is usually
used for model selection. Therefore, it can be used to estimate
if the windowed audio is better modelled with two different dis-
tributions (one for each window) or a single one (combining
both windows), thus effectively detecting changes in the audio
stream. Nevertheless, this algorithm is computationally very ex-
pensive. That is why some implementations prefer to use other
metrics, which may be less accurate but faster. Examples of
these metrics are Hotlling’s T2 [4], the Gaussian divergence [2]
or the generalised likelihood ratio (GLR) [5]. It is also possible
to use these faster metrics as a first approach, and then refine
the detected changes with BIC [6].

Regarding the windowing, the simplest way to implement
the algorithm is to use two adjacent fixed-size sliding windows.
The distance metric between both windows is calculated, and
the peaks in the distance function define the locations of the
change points. A more elaborated windowing scheme that is
usually applied together with the BIC metric uses a growing
window. Every audio frame inside the window is a possible
change point, and the BIC value for each of them is calculated.
If the highest BIC value inside the window is greater than zero,
a change point is detected at the position of that maximum, and
the window is reset to its original size. If not, the window grows
a fixed length and the process starts again. Generally, the grow-
ing window scheme provides better accuracy results, but is also
computationally more expensive. Some implementations re-
duce this computation cost avoiding to search for changes in

FALA 2010
VI Jornadas en Tecnología del Habla and II Iberian SLTech Workshop

-393-



improbable places and defining a limit to the window length
[7, 8].

2.3. Clustering

Once the boundaries among speakers are known, it is necessary
to detect which speech segments belong to the same speaker.
This step is usually implemented as a clustering process, the
bottom-up clustering being the most common method. The dis-
tance between all cluster pairs is calculated, and the pair with
least distance is selected and combined. Then, the distancema-
trix is updated and another pair is selected until the stop crite-
rion is met. Many distance metrics can be used: BIC, GLR,
Euclidean distance between GMM, etc.

2.4. Cluster recombination

Although this step is not absolutely necessary, it may improve
the final result [1]. The idea here is to under-cluster the seg-
ments in the first clustering process, thus having more clusters
than speakers, but at the same time ensuring that the clusters
have a reasonable amount of speech. A GMM model is created
for every cluster by MAP adaptation from a UBM. Finally, the
GLR is used in order to identify which clusters to recombine.
A new model is created for the newly recombined cluster, and
the process is repeated until the stop criterion is met. It has
been shown that feature normalisation is necessary to get any
improvement with this technique [2].

2.5. Resegmentation

Now that each cluster has a reasonable amount of information,
it is possible to train new models for each speaker, and use them
in combination with the non-speech models in order to make a
new Viterbi segmentation. This way it is possible to refine the
segmentation boundaries. This process can be repeated itera-
tively for increased accuracy.

3. Proposed algorithm description
Figure 1 shows a schematic diagram of the proposed diarisation
algorithm. The algorithm is based on an efficient implementa-
tion of a BIC change detector and an on-line speaker cluster-
ing. The change detector works with MFCC features without
derivatives, whereas the speech detector appends first and sec-
ond derivatives to this parametrisation. Furthermore, theBIC
algorithm uses voiced frames only, discarding any unvoiced
segment. In the following sections, each step in the algorithm
will be explained with more detail.

3.1. Speech detection

A separate GMM model was trained for music, noise, clean
speech, speech+music and speech+noise, using the develop-
ment recordings and the audio segmentation labels providedby
the contest organisation. These models are used in a Viterbi
segmentation in order to detect audio segments with and with-
out speech.

As the process ought to be on-line, an on-line Viterbi al-
gorithm as described in [9] was implemented. This modified
algorithm keeps track of the active paths and efficiently detects
whether they converge in some point or not. In the case of all
the paths converging in a point, the segmentation decision up to
that point can be extracted, without loosing any accuracy and
without needing to wait until the whole file has been processed.
Furthermore, the part of the trellis that contained the consoli-

dated path can be erased from memory, as it is not needed any-
more.

Development experiments showed that the addition of first
and second derivatives of MFCC provides slightly better seg-
mentation results.

3.2. Speaker segmentation

For the initial speaker change detection, a growing window ar-
chitecture and BIC metric are used. The growing window pro-
vides better results than a fixed-size sliding window, but the
computational cost is also larger. In order to reduce the time
of computation as much as possible, the solution described in
[8] is used:

• No speaker change is searched in the first and last 2 sec-
onds of the window.

• The window grows 2 seconds every time that no change
is detected.

• Once the window reaches 20 seconds, instead of grow-
ing, it becomes a sliding window.

• For each window, a speaker change is searched every 250
ms. If a change is located, the search is refined to 50 ms.

• Once a change is found, the window size is reset to 5
seconds.

This solution provides the accuracy of a growing-window
algorithm accuracy, while keeping the window size and the
amount of calculation to a minimum. Furthermore, the cal-
culation of the BIC values is also optimised by using a buffer
of cumulative sums as described in work made by Cettolo and
Vescovi [8].

Development results showed that discarding unvoiced
frames and using only voiced ones decreased the diarisationer-
ror in a 12%. Therefore, only voiced frames were used for the
speaker change detection. Similarly, it was confirmed that the
use of feature derivatives was not convenient for this task.

3.3. Clustering

An on-line clustering that uses BIC metric was implemented,
following the description given in [7]. Every time the speaker
segmentation algorithm detects a new boundary, the newly ex-
tracted speech segment is immediately given to the clustering
process. This process computes the BIC of this new segment
against all known clusters, and selects the one with lowest BIC
value. If this value is under a given threshold, the segment is
assigned to that cluster and the cluster statistics are updated. If
not, a new cluster is formed with the new segment.

This on-line clustering is theoretically suboptimal, since the
clustering is performed without the information of forthcoming
segments. However, in practice the on-line clustering may give
better results than the bottom-up off-line clustering. Therea-
son is that the speaker segmentation algorithm over-segments
the speech, providing false speaker boundaries. Therefore, two
consecutive segments are more likely to belong to the same
speaker than segments far apart. The on-line clustering makes
the clustering decision more locally, thus reinforcing thecom-
bination of adjacent segments. This algorithm not only doesthe
clustering on-line, but it also provides better results.

3.4. Voiced unvoiced detection

As described before, the speaker change detection step uses
only voiced frames, discarding the unvoiced ones. In order to

FALA 2010 - VI Jornadas en Tecnología del Habla and II Iberian SLTech Workshop

-394-



MFCC
Speech

detect ion

Speaker
change

CEPS V/UV Cluster

Realign
MFCC
buffer

V/UV
buffer

VAD
buffer

Change
points

Segment
statistics

V/N

Speaker
ID

Time
label

Figure 1: Schematic diagram of the diarisation algorithm.

make the voiced/unvoiced (VUV) estimation, the PTHCDP al-
gorithm described in [10] was used. This algorithm uses cep-
strum transformation and dynamic programming in order to es-
timate theF0 curve and the VUV information. The algorithm
was modified in order to use the on-line Viterbi algorithm, so
that partial paths can be extracted with the VUV information
every time the active paths converge.

3.5. System integration

The whole algorithm is meant to run on-line in a single itera-
tion. But the clustering subprocess must wait until a speaker
change is detected, and the speaker change subprocess is idle
until the speech detector and the VUV detector make a decision.
Both detectors make decisions asynchronously, depending on
their own Viterbi algorithm and the convergence of their paths.
Meanwhile, new feature frames are being generated from the
audio input. For the synchronisation of all these subprocesses,
a series of buffers and control points must be used.

Every time a new frame is collected, it is parametrised
and delivered to the speech detection and VUV detection al-
gorithms. Furthermore, the MFCC parametrisation is saved in a
buffer for later use. In order to deal with the asynchronous be-
haviour of the speech detection and VUV detection algorithms,
their outputs are directly stored in the corresponding buffer as
soon as path convergence is detected. Now, letN be the num-
ber of speech decisions available in the VAD buffer, andM

the number of VUV decisions available in the corresponding
buffer. Then, we have a total ofmin{N, M} new frames with
all decisions made, so that they can be further processed. These
frames are extracted from the MFCC buffer and the ones with-
out speech and the voiced ones are discarded. The rest (if any)
are provided to the speaker change algorithm.

As these frames are not needed anymore, they are deleted
from the MFCC buffer, in order to save memory. At the same
time, the time realignment process gets some information from
the speech detection and VUV decisions for later use, and these
decisions are also deleted from the buffers.

Whenever the speaker change algorithm finds a new bound-
ary, it outputs the necessary statistics for the clusteringprocess,
together with the time instant in which this change happens.As
this algorithm takes only voiced frames as input, this time mark
does not consider non-speech or unvoiced frames. Therefore,
a time realignment is necessary in order to convert the detected
change times into absolute times. Finally, the clustering process
outputs a unique speaker label, and the time realignment system
outputs the corresponding time labels.

4. Analysis of the results
The presented algorithm was submitted as the primary system
to the Albayzin Speaker Diarisation Challenge 2010. Never-
theless, two other systems were also presented as reference.
The first one was an off-line version of the main algorithm,
in which each subprocess (speech detection, VUV decision,
speaker change detection and the clustering of the segments)
was executed one after the other. The second one was an off-line
version in which unvoiced frames were also considered for the
speaker change detection algorithm, thus not needing a VUV
decision step. This section compares the three systems in terms
of diarisation accuracy and execution speed. See Table 1 forthe
error rates and Table 2 for the execution speed of each one of
these systems.

The main difference between the on-line and off-line ver-
sions is post-processing. The algorithms used in both casesare
the same, but the off-line architecture allows us to post-process
the outcome of each step before going into the next one, which
is not possible in the on-line system. For example, speech de-
tection labels were post-processed in order to discard silences
shorter than 500 ms, before feeding them to the speaker change
detection algorithm. This provides a better estimation of speech
activity, which is reflected in a much lower missed speaker error
rate (see Table 1). However, the results from the speaker change
detection or the clustering systems are not post-processed. As
a result, the speaker error rate does not change much between
the on-line and off-line architectures, and the small difference
is due to the speech detection labels being more accurate.

Table 1 also shows the effect of discarding unvoiced frames
for the speaker change detection step. When unvoiced frames
were used in the off-line system, the speaker error rate increased
a 16%. As the speech detection algorithm always uses both
voiced and unvoiced frames, there is no difference in the missed
speaker and false alarm error rates.

It is also interesting to compare the systems in terms of ex-
ecution speed. Table 2 shows the average CPU time required
in order to process one hour of speech. For the off-line imple-
mentations, the time required for each step is also shown. These
measures were made on a quad-core Intel Xeon 2.27 GHz com-
puter with 6 GB memory. Nevertheless, these values are not
meant to be an absolute measure of the complexity of each sys-
tem, but can be used in order to see which one is faster.

The on-line architecture makes a single iteration over the
speech data, whereas the off-line systems must perform several
iterations and post-processings. As a result, there is a signifi-
cant difference in the processing speed. The off-line architec-

FALA 2010 - VI Jornadas en Tecnología del Habla and II Iberian SLTech Workshop

-395-



Error time Off-line Off-line On-line
(in %) w/ unvoiced

Missed speaker 2.8 2.8 4.9
F-alarm speaker 1.2 1.2 1.5
Speaker error 26.9 23.1 23.9
Diarisation error 31.00 27.17 30.38

Table 1: Error rates for each system on the Albayzin Speaker
Diarisation Challenge 2010.

ture needs 161 CPU seconds to process one hour of speech,
whereas the on-line systems needs 126 seconds. This means
that the on-line implementation is a 22% faster, mainly due to
the reduction in the number of iterations.

It is outstanding that half of the execution time of the off-
line system without unvoiced frames is spent in the VUV detec-
tion step. When unvoiced frames are not discarded, this stepis
unnecessary, and the total execution time decreases to 83 sec-
onds. Although we have not the corresponding measurements,
is is expected that an on-line system without VUV detection
would be even faster.

5. Conclusions
Most of the current speaker diarisation systems rely on an off-
line architecture, in which several processing steps are per-
formed over the same audio recording, one after the other. In
this paper an on-line diarisation system has been described.
This algorithm requires a single iteration in order to process the
audio, and can be used with direct audio input or audio stream-
ing. This features makes it suitable for applications wherethe
recording of the signal is not a possibility.

As all the processing must be done in a single iteration, it is
not possible to post-process the outcome of each step beforego-
ing into the next one. Therefore, a certain increase of the error
rate is unavoidable. The results show that the on-line architec-
ture has indeed a 12% increase in the total diarisation errorrate
when compared to the off-line system. This increase is mostly
due to a higher missed speaker error rate, which in turn occurs
because it is not possible to post-process the speech detection
labels.

Nevertheless, making the system run on a single iteration
has its advantages in terms of speed. It has been shown that the
on-line architecture is a 22% faster than the same algorithms
running in an off-line fashion.

The possibility of including or discarding unvoiced frames
in the speaker change detection algorithm has also been studied.
On the one hand, discarding these frames provided a significant
reduction in the speaker error rate. On the other hand, in order to
discard these frames, a VUV detection step is mandatory, which
increases the computational cost of the system. For example,
the VUV detection algorithm that was used in the experiments
[10] takes half of the total execution time. If the diarisation
algorithm must run on devices with severe processing restric-
tions, faster VUV detection algorithms should be used, or even
the whole VUV detection step can be avoided if the speaker
change detection is performed with both voiced and unvoiced
frames.

CPU time Off-line Off-line On-line
(in seconds) w/ unvoiced

Speech Detection 36.0 36.0 –
VUV detection – 81.0 –
Diarisation 47.1 44.2 –
Total 83.1 161.2 126.1

Table 2: Mean CPU time for one hour speech for each one of
the systems.

6. Acknowledgements
This work has been partially supported by the Spanish Ministry
of Science and Innovation (Buceador Project, TEC2009-14094-
C04-02) and The Basque Government (Berbatek, IE09-262).

7. References
[1] D. A. Reynolds and P. Torres-Carrasquillo, “The MIT Lincoln

Laboratory RT-04F diarization systems: Applications to broad-
cast audio and telephone conversations,” inNIST Rich transcrip-
tion Workshop, Palisades, NY, USA, Nov. 2004.

[2] R. Sinha, S. E. Tranter, M. J. F. Gales, and P. C. Woodland,“The
cambridge university march 2005 speaker diarisation system,” in
Interspeech, Lisbon, Portugal, Sep. 2005, pp. 2437–2440.

[3] S. S. Chen and P. S. Gopalakrishnan, “Speaker, environment and
channel change detection and clustering via the bayesian informa-
tion criterion,” inDARPA speech recognition workshop, 1998, pp.
127–132.

[4] B. Zhou and J. Hansen, “Unsupervised audio stream segmentation
and clustering via the bayesian information criterion,” inICSLP,
Beijing, China, Sep. 2000, pp. 714–717.

[5] S. Meignier, D. Moraru, C. Fredouille, J. F. Bonastre, and L. Be-
sacier, “Step-by-step and integrated approaches in broadcast news
speaker diarization,”Computer Speech and Language, vol. 20, pp.
303–330, 2006.

[6] P. Delacourt and C. J. Wellekens, “DISTBIC: A speaker-based
segmentation for audio data indexing,”Speech Communication,
vol. 32, pp. 111–126, 2000.

[7] A. Tritschler and R. A. Gopinath, “Improved speaker segmenta-
tion and segments clustering using the bayesian information crite-
rion,” in Eurospeech, Budapest, Hungary, Sep. 1999, pp. 679–682.

[8] M. Cettolo and M. Vescovi, “Efficient audio segmentationalgo-
rithms based on the bic,” inInternational Conference on Acous-
tics, Speech, and Signal Processing (ICCASP’03), vol. 6, april
2003, pp. 537–5340.

[9] R. Šrámek, “The on-line Viterbi algorithm,” Master’s thesis,
Comenius University, Bratislava, 2007.

[10] I. Luengo, I. Saratxaga, E. Navas, I. Hernáez, J. Sánchez, and
I. Sainz, “Evaluation of pitch detection algorithms under real con-
ditions,” in ICASSP, Honolulu, USA, Apr. 2007, pp. 1057–1060.

FALA 2010 - VI Jornadas en Tecnología del Habla and II Iberian SLTech Workshop

-396-




