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Abstract
This paper describes the speaker diarization systems proposed
by the VIVOLAB-UZ group for the Albayzin 2010 speaker di-
arization evaluation. Our approaches combine recent improve-
ments in the field of speaker segmentation in two speaker tele-
phone conversations, using eigenvoice modeling, with the tra-
ditional Agglomerative Hierarchical Clustering approach. We
are presenting two submissions. Our first system uses a simple
eigenvoice factor analysis model to extract a stream of speaker
factors for every recording that enable better speaker separabil-
ity. The speaker factor stream is used for speaker segmenta-
tion. Then, both the clusters obtained are agglomerated using
Bayesian Information Criterion as distance metric, obtaining
the speaker labels. Our second submission is exactly the same
system, but it uses Viterbi resegmentation to refine speaker
change points as a final step.
Index Terms: Speaker diarization, Factor Analysis, intra-
session variability, Agglomerative Hierarchical Clustering,
Bayesian Information Criterion

1. Introduction
The main breakthroughs in the field of speaker diarization have
been introduced this decade, in part due to the NIST Rich
Transcriptions (RT) evaluations. From 2002, NIST has coordi-
nated several Rich Transcription Evaluations aiming at extract-
ing information from audio recordings such as speaker turns or
speech transcriptions. All these evaluations involved a Speaker
Diarization task, that has become the framework for research
and development of the state of the art speaker diarization tech-
nologies. In the beginning, the environment to evaluate speaker
diarization approaches in the RT framework were telephone
conversations and broadcast news. From 2005 the evaluation
has focused on meetings. The current Albayzin evaluation does
not differ much from those RT evaluations on broadcast news.

Most of the best performing systems presented in the RT
evaluations are based on Agglomerative Hierarchical Cluster-
ing, that is, after a first segmentation, that gives a set of clus-
ters, the system performs a bottom-up clustering until a stop-
ping criterion is met [1]. Usually, Viterbi resegmentations are
performed every time two clusters are merged, and several cri-
teria are used for cluster merging and as stopping criterion. One
of the most widespread is the Bayesian Information Criterion
(BIC), that has shown to perform well for both cluster merging
and stopping criterion.

On the other hand, recently, there has been a great advance
in the field of speaker identification, in part motivated by the
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NIST Speaker Recognition Evaluations (SRE). One of the main
breakthroughs of the last years has been the formulation of the
Joint Factor Analysis (JFA) for speaker verification [2]. This
has motivated the application of this new technique to different
areas, mainly to the task of speaker segmentation in two speaker
conversations. Some approaches for two speaker segmentation
that make use of JFA are presented in [3], [4], [5].

VIVOLAB-UZ is submitting two systems, both based on a
combination of a JFA based speaker segmentation system and
a BIC based AHC system. The only difference is that the first
system obtains speaker labels directly from the BIC AHC step,
while the second uses these labels to perform a final Viterbi
resegmentation.

2. System Description
Our speaker diarization systems fuse a JFA based speaker seg-
mentation system and a BIC based AHC system. Currently
our speaker segmentation system works with a given number
of speakers (it was designed for 2-speaker conversations), so
firstly, after running a speech activity detector (SAD), we split
every recording into 5 minute slices and every slice is processed
with the speaker segmentation system separately. We force the
speaker segmentation system to find 10 speakers in every slice.
Once we have 10 clusters for every 5-minute slice, we perform
a BIC AHC algorithm over the whole recording to merge those
clusters belonging to the same speakers until a stopping crite-
rion is met. This way we obtain th output for the first system.
Our second system will use directly this output to perform a
Viterbi resegmentation. The different steps of the VIVOLAB-
UZ speaker diarization system are described in the following
subsections.

2.1. Features

The features used for all steps in the diarization system are 18
MFCC including c0, computed every 10 ms over a 25 ms win-
dow. No normalization is used on the features.

2.2. Speech Activity Detector

The first step in most speaker diarization systems is to separate
the speech segments from those segments that does not contain
speech. In our case, non-speech segments may contain music,
noise or silence. To obtain the speech segments we train 64
gaussian GMMs for two classes using the development data.
One GMM for speech and the other one for non-speech. We run
a Viterbi segmentation, modeling every class with 10 tied-states
[6] that share the same GMM as the observation distribution.
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2.3. Segmentation System

In the proposed speaker segmentation system, described in [5],
we use a factor analysis approach to model the desired sources
of variability. As a starting point we try to capture the variability
present among different speakers. For this purpose, we model
every speaker by a Gaussian Mixture Model (GMM) adapted
from a Universal Background Model (UBM) using an eigen-
voice approach [7], according to:

Ms = MUBM + V y. (1)

Where Ms is the speaker GMM supervector, obtained con-
catenating all Gaussian means, MUBM is the UBM supervec-
tor, V is the low rank eigenvoice matrix, and y is the set of
speaker factors, which follows a standard normal distribution
N(y|0, I) a priori. This way every speaker is represented by a
GMM supervector in a high dimension space, and in such space
we allow the speakers to lay in the low dimension subspace gen-
erated by the column vectors of V , which point to the directions
of maximum variability among speakers. We refer to this vari-
ability as inter-speaker variability and to the low rank subspace
as the speaker subspace.

In our approach we use a 256 Gaussian UBM. The dimen-
sion of the speaker subspace is 20, compared to the dimension
of the supervector space that is 256 × 18 = 4608. This way
every point estimate for a given speaker is defined by a set of 20
speaker factors.

Once we have the speaker factors we apply Within
Class Covariance Normalization (WCCN) to compensate intra-
session variability and to ensure that the variance of the speaker
factors is close to I for every speaker as in [8]. WCCN is a nor-
malization method that allows to obtain a linear transformation
for a given set of features belonging to different classes so that
the within class covariance matrix Sw defined in Eq. 2 is equal
to the identity matrix I . This technique assumes that all classes
have the same covariance matrix.

Sw =
1

S − 1

S∑
s=1

1

Ns − 1

Ns∑
n=1

(ysn − µs)(ysn − µs)T (2)

µs =
1

Ns

Ns∑
s=1

ysn (3)

To obtain the linear transformation we first obtain Sw as
shown in Eq. 2 and then we apply Cholesky decomposition, so
the transformed speaker factors y′ will follow this expression:

y′ = Ry (4)

S−1
w = R′R (5)

where R is the upper triangular matrix obtained by Cholesky
decomposition.

To perform speaker segmentation given a sequence of fea-
ture vectors, we estimate the speaker factors for every frame
over a 100 frame window, with an overlap of 990 ms, we
transform the speaker factors using WCCN, and we estimate
a 10-Gaussian GMM to model the stream of speaker factors
obtained, after removing non-speech frames according to the
SAD. Each one of these Gaussians will be assigned to a single
speaker. We perform this process over 5-minute slices, obtain-
ing 10 new speakers for every slice.

2.3.1. Initialization

We have detected that a good initialization is quite important to
ensure that every Gaussian in the GMM corresponds to a single
speaker. In our approach, we use prior knowledge about speaker
factors proposed in [2]: A priori, speaker factors are assumed
to be distributed according to the standard normal distribution
N(y|0, I). Since we obtain speaker factors from a small data
sample, using MAP estimation, we can expect the posterior dis-
tribution of speaker factors for a single speaker to keep some
properties of the prior. In addition, since we perform WCCN
on the speaker factors, we will be closer to fulfill this assump-
tion. Assuming that the posterior variance is close to I , we can
perform PCA to obtain those directions of maximum variability
in the speaker factor space. Then we will use 9 (Nspks − 1)
directions to obtain, using K-means, a first clustering.

This strategy gives ten clusters that can be seen as a first
speaker segmentation, and then K-means clustering is per-
formed over the 20 speaker factors to reassign frames to the
ten clusters and a single Gaussian is trained on each of them.

2.3.2. Core Segmentation

The 10 Gaussians previously trained serve as initial GMM of
the whole recording. Then a two stage iterative process is ap-
plied until convergence: first several Expectation-Maximization
(EM) iterations are used and then, every Gaussian is assigned to
a single speaker and a Viterbi segmentation is performed. Ac-
cording to this new frame assignment, 10 Gaussian models are
trained and the iterative process restarts again. Convergence is
reached when the segmentation of the current iteration is iden-
tical to that obtained in the previous one.

To avoid fast speaker changes, in the Viterbi segmentation,
we modify the speaker turn duration distribution using a se-
quence of tied-states [6] for every speaker model. This way,
we avoid the state duration to follow a geometric distribution
that cannot accurately model real speaker turn durations. Each
speaker model is composed of 10 states that share the same ob-
servation distribution, a single Gaussian in this case. Tied-states
are not considered for the silence, but a single state without an
observation distribution is used, since the algorithm is forced to
go through the silence state according to the SAD labels. We
have observed that this way of modeling speaker turn duration
yields better results than modifying the transition probability.

2.4. Clustering

Once we have a set of ten clusters for every 5-minute-slice, an
AHC step is performed to obtain the final clusters that corre-
spond to the actual speakers. For this purpose, BIC is consid-
ered both as clustering metric and as stopping criterion. Every
cluster is modeled using a single full covariance gaussian us-
ing MFCC, and two hypotheses are considered for every pair of
clusters: The null hypothesis, that is, assuming that both clus-
ters belong to the same speaker, and the 2 speaker hypothesis,
that is, assuming that every cluster belong to a different speaker.
BIC is computed for both hypotheses, and the ∆BIC is com-
puted as ∆BIC = BIC2spks −BICnull. The pair of clusters
having lower ∆BIC is merged. Clusters are not longer merged
when ∆BIC > 0. To penalize the 2 speaker hypothesis the λ
parameter for model complexity penalization is set to 10.0.

This step will give the output of the first VIVOLAB-UZ
submission.
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2.5. Resegmentation

Only the second system performs a final Viterbi Resegmenta-
tion. For this purpose, we model every speaker with a 32 com-
ponent GMM using MFCC, according to the output of the BIC
AHC step. As in the core segmentatino system, we use 10
tied-states for speaker models and a single state for all silence
frames.

3. Development data
As development data we have considered those recordings pro-
vided for this purpose in the evaluation (16 sessions from the
Catalan Broadcast News database) and the English and Mexi-
can Broadcast News Speech from the Hub4 database.

For training the GMMs used in the SAD the 12 first sessions
from the provided development data were used. The remaining
4 sessions were used to check the SAD and to adjust the AHC
parameters (λ).

For training the UBM, the Eigenvoice matrix V and the
WCCN transformation the Hub4 database was considered. Per-
formance will be degraded for using different languages and
dialects to train the models to obtain the speaker factors, but we
could not find any other labeled datasets in Catalan.

4. Computational cost
The proposed system runs in matlab and it is not optimized. The
following table resumes the computational cost for every step of
the proposed diarization system:

Operation Computational cost, real time (rt)
Obtain speaker factors 0.20× rt
SAD 0.02× rt
Segmentation 1.10× rt
BIC AHC < 0.01× rt
Viterbi resegmentation ≈ 1.20× rt

Table 1: Computational cost of the speaker diarization system,
step by step.

5. Conclusions and Future Work
This is the first time that VIVOLAB-UZ group participates in a
Speaker Diarization Evaluation. We have built a system com-
bining two state-of-the-art technologies: JFA and eigenvoice
modeling for speaker segmentation and BIC based AHC for
speaker clustering. We believe in the potential of the eigenvoice
modeling for the task of speaker segmentation, but due to the
lack of training data, we do not expect this submission to obtain
state-of-the-art performance.

As future work we plan to study the potential of the eigen-
voice modeling using matched data to train the V matrix, and
we plan to improve the speaker clustering using GMM to model
every cluster instead of single gaussians, and using a bigger
GMM to model the null hypothesis, canceling the complexity
penalization term in the BIC computation. This should give
better agglomeration and a more robust stopping criterion.

Finally we plan to introduce Bayesian approaches to deter-
mine the number of speakers. We are working in the develop-
ment of a speaker diarization system that combines eigenvoice
modeling for speaker segmentation and Variational Bayes for

determining the number of speakers in the recording. We be-
lieve this approach can obtain competitive performance.
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