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Dpto. de Teorı́a de la Señal y Comunicaciones, EPS-Universidad Carlos III de Madrid, Avda. de la Universidad 30,

28911-Leganés, Madrid, Spain

Received 15 April 2005; received in revised form 25 July 2006; accepted 25 July 2006
Abstract

In this paper we address the problem of automatic speech recognition when wireless speech communication systems are
involved. In this context, three main sources of distortion should be considered: acoustic environment, speech coding and
transmission errors. Whilst the first one has already received a lot of attention, the last two deserve further investigation in
our opinion. We have found out that band-pass filtering of the recognition features improves ASR performance when
distortions due to these particular communication systems are present. Furthermore, we have evaluated two alternative
configurations at different bit error rates (BER) typical of these channels: band-pass filtering the LP-MFCC parameters
or a modification of the RASTA-PLP using a sharper low-pass section perform consistently better than LP-MFCC and
RASTA-PLP, respectively.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Robustness in automatic speech recognition
(ASR) systems has always been an extremely impor-
tant issue since the first attempts to transfer this
technology from research laboratories to real world
applications. According to Junqua (2000) we can
distinguish three sources of variability in speech that
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affect the performance of ASR systems: task and
speaker is the first broad class, the second is the
acoustic environment and last, transducers and trans-

mission channels.
In this paper we are interested in dealing with the

distortion produced by the new transmission chan-
nels that have emerged in voice transmission. This
technology has experienced an enormous revolution
in the past decade and still continues. These systems
have evolved from the classical and sole transmis-
sion channel provided by public switched telephone
network (PSTN) into a wide range of alternatives
that include wireless cellular systems, VoIP, Blue-
tooth, wireless local and personal area networks of
even a mixture of them.
.
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Besides, the pervasiveness of all these means of
voice transmission has triggered the creation of mul-
tiple new information providing services that users
can access through these networks. These services
can greatly benefit from the use of automatic dialog
systems for which an improved performance of the
ASR subsystem over the particular underlying
transmission channels can significantly reduce the
need to resort to a human operator in many
situations.

In this context, our work focuses on improving
the robustness of ASR systems that are accessed
through a wireless network. Thus, in this scenario
the speech signal is transmitted through the corre-
sponding wireless standard channel and is recog-
nized at a remote server. This is not the only
approach to this problem. Either embedded or dis-
tributed speech recognition (DSR) face up the same
problem from a different point of view. Though not
considered in this paper these alternatives are briefly
reviewed and their drawbacks and advantages com-
pared with those of the option considered here.

In this paper, we pay attention to two typical
sources of distortion of wireless channels: lossy
speech coding and transmission errors. Our work
is inspired in previous works that suggested the
filtering of the modulation spectrum of the speech
features to deal with channel-distorted or noisy
speech (Hermansky and Morgan, 1994; Hanson
and Applebaum, 1993; Nadeu et al., 1997 are good
examples). We have applied and adapted these ideas
to the distortions typical of wireless speech
communications.

As a starting point, we consider two well-known
parameter sets, namely: MFCC and LP-MFCC.
Further on, we focus on LP-MFCC since our exper-
iments reveal that it performs better than MFCC in
presence of coding distortion and transmission
errors. We also compare our proposal with
RASTA-PLP (Hermansky and Morgan, 1994), a
well-known filtering-based parameter set.

We show, conceptually and experimentally, that
a band-pass filtering of the time sequences of the
spectral parameters is beneficial to deal with distor-
tions due to transmission errors. Specifically, we
suggest two configurations: the first one, called
BPF-LP-MFCC, consists on a band-pass filtering
of the LP-MFCC parameters; the second one is a
modified version of RASTA-PLP, called M-
RASTA-PLP, using a sharper low-pass section. In
both cases, we obtain significant improvements with
respect to LP-MFCC or the original RASTA,
respectively, when transmission errors are consi-
dered.

The paper is organized as follows: Section 2 pre-
sents the problem of ASR in wireless communica-
tion systems; Section 3 describes the previous
works on filtering the spectral parameters and dis-
cusses the reasons (either given by other authors
in other contexts, or presented in this paper for
wireless speech) for which we propose to improve
and adapt this technique to the wireless speech
communication scenario; Section 4 describes the
experimental setup, the baseline systems, and the
experimental assessment of the filtering-based
proposed techniques in comparison to well-known
robust parameterization methods; finally, conclu-
sions and directions of further work are summarized
in Section 5.

2. ASR in wireless environments

The enormous success of the wireless cellular sys-
tems makes the analysis of the distortion caused by
them a relevant issue of research. With this purpose,
we can identify the main sources of distortion orig-
inated by these systems that affect the performance
of speech recognizers as

• Acoustic environment: Though strictly speaking
this is not a distortion caused by the wireless sys-
tem itself we have included this category into the
classification to reinforce the idea that the wire-
less nature of these networks have broaden
dramatically the variety of situations or acoustic
environments in which voice is likely to be origi-
nated. Therefore, though indirectly, it poses a
new challenge on the speech recognition systems.

• Speech coding distortion: The wireless bandwidth
is a very expensive resource due to the increasing
number of emergent wireless services that has
only made worse the saturation that already
existed in the radio-electric spectrum. Therefore,
to optimize the productivity of the spectral bands
that allow the transmission using electronic
devices of mass production, extremely smart
bandwidth sharing protocols have been devised.
As part of these efforts to maximize the utiliza-
tion of the spectrum the use of medium and
low-rate speech coders plays a fundamental role
in the feasibility of these networks in the market
place. This aggressive compression of the speech
signal produces a distortion that damages the
speech recognizer operation.
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• Transmission errors: Due to the unreliable and
variable nature of the radio-channel, transmis-
sion errors are much more likely to happen in
this type of networks than in wired ones. This
issue is partly addressed by the channel coders
that aim at minimizing their effects. However,
some errors remain affecting once more the
performance of speech recognizers.

To overcome the effects of these sources of
distortion three main approaches can be encoun-
tered in the literature, namely: local, distributed
and remote speech recognition. We will outline their
main strengths and limitations in the next section,
paying special attention on the way in which they
cope with the mentioned distortions.

2.1. System architectures for speech recognition

over wireless cellular systems

This taxonomy was established by Digalakis
et al. (1999) attending to the distribution of the pro-
cesses of feature extraction (front-end) and decod-
ing (back-end) between the local user device and
the service provider computing system.

2.1.1. Local or embedded speech recognition

When both front-end (FE) and back-end (BE)
modules are allocated in the user device we usually
refer to it as local or embedded speech recognition
(Junqua, 2000). This is indeed, the best way to avoid
both coding distortion and transmission errors,
since no transmission of the speech signal is needed:
the speech transcription is sent to the server end as
text data.

The main drawback of these systems is the lim-
ited capability of the devices, normally small, that
makes the embedding of a speech recognition appli-
cation extremely challenging and only allows the
deployment of restricted vocabulary tasks. In fact,
this is a very interesting problem per se and cur-
rently a topic of active research. However, it will
not be treated in this paper.

2.1.2. Distributed speech recognition

Under the distributed speech recognition (DSR)
approach the BE (the most computationally
demanding of the two processes) is situated in the
server side, while the FE still resides in the user
device (the client).

The advantages of this approach rely on the fact
that the bandwidth required to transmit the features
for recognition is very small, while the computa-
tional effort needed for their extraction is not so
high and therefore can be accomplished by modest
devices. Besides, a more protected data channel
can be used for the transmission of the features
instead of the speech channels used for the coded
speech transmission.

Nonetheless, in the typical voice-enabled services
the amount of data sent to the server (usually an
information request) is not very high and therefore
it does not make a significant difference in band-
width usage to send the features for recognition or
the coded speech (provided a Discontinuous Trans-
mission-DTX-system is used).

On the other hand, there is still a lot of research
going on about the design of FE for speech recogni-
tion that can be difficult and expensive to fit in a
conventional user device (see for example Chen
et al., 2004) and nonetheless provide important
improvements when included in the server side.

However, in order for the FE to match the BE
the user and the server must agree in the type of fea-
tures that are going to be computed and therefore
an important effort has been taking place to come
up with the appropriate standards. The earlier stan-
dard (ETSI ES 201 108, 2003) was found to behave
poorly in noisy environments and thus recently a
second advanced front-end (AFE) (ETSI ES 202
050, 2004) has been defined. This ETSI initiative
has produced an enormous advance in the under-
standing of noise influence on speech recognizers
and many proposals have been shown to improve
significantly the performance under those condi-
tions. Fortunately, most of those techniques can
be implemented as well in the server end (though
with the impairment caused by the coding distor-
tion) and therefore are not tied to the use of DSR
approaches.

Still, there are some remaining issues for the
implementation of those FE in the user devices as
discussed in (Kiss et al., 2003) related with infra-
structure changes and application adaptations.

2.1.3. Remote speech recognition
On the other hand the remote speech recognition

approach does not require the local user device to
do any processing of the speech signal further than
the usual encoding and transmission already embed-
ded in the majority of them. The whole recognition
process takes place at the server end.

In this paper we have chosen this approach for
several reasons:
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• It provides the server with the ability to choose
the FE that better matches a particular applica-
tion and even update it when needed.

• It does not impose restrictive conditions on the
client terminal capabilities nor does it create the
need for special setting or agreements between
client and server.

• It preserves the transmission bandwidth require-
ments and the compatibility with the existing
standard-based voice applications.

• It is possible to recover the uttered speech signal
with the quality provided by the speech coders
employed.

• The new adaptive multi-rate (AMR) speech cod-
ers balance appropriately the amount of band-
width employed for the actual transmission and
the protection of that transmission taking into
account the conditions of the channel, while
these amounts are fixed in the case of DSR.
Besides, tandem free operation (TFO) systems,
when available, limit the speech coding distor-
tion to one stage (ETSI TS 128 062 V6.1.0,
2004).

As for the drawbacks of these remote recognition
systems we can name two: the coding distortion and
the transmission errors. We will take a closer look
to these problems and the solutions provided so
far in the next section.

2.2. Wireless transmission distortions

The main transmission distortions caused by the
wireless cellular communication networks are the
coding–decoding distortion and the transmission
errors.

Thus, from the early works by Euler and Zinke
(1994) and Lilly and Paliwal (1996) to the more
recent by Hirsch (2002) we learned that for medium
to low rate speech coders the loss of recognition
accuracy becomes important but that this impair-
ment can be greatly reduced by training the recog-
nizer with the same speech coder (matched
conditions). It is important to realize that in con-
trast with the environment noise distortions when
the perfect matching is almost impossible in real
implementations, the set of types of coding distor-
tions is very small (the number of speech coders
employed) and given that the information of the
coder employed is always signaled in the communi-
cations protocol it is therefore feasible to consider
the matched situation.
Bitstream-based solutions have been proposed
(Peláez-Moreno et al., 2001; Kim et al., 2002; Gal-
lardo-Antolı́n et al., 2005) to cope with the trans-
mission distortions. The principle behind those
solutions is to avoid the coding distortion and an
important part of the transmission errors by extract-
ing the bits that carry the information needed
for recognition before the decoding stage. This
approach takes advantage of the unequal error pro-
tection (UEP) of the channel coding that makes the
spectral envelope of the speech signal much more
robust to transmission errors than the rest of the
signal. The main drawback of this approach is that
the feature extraction module needs to have direct
access to the bitstream.

Therefore, in our opinion, specific solutions for
the channel and coding distortions compatible with
the application of noise-robust FE should be con-
sidered. We have analyzed these problems in this
paper considering both the channel and the source
coding which has led us to the proposal of an
enhancing filtering of the modulation spectra of
the speech features.

3. Filtering the time sequences of spectral

parameters for wireless speech recognition

3.1. Modulation spectra

Fig. 1 illustrates the well-known process of
obtaining a set of parameters from the speech sig-
nal. In particular, the speech signal is analyzed in
a frame by frame basis and a N-dimensional param-
eter vector is obtained for each frame. Besides, we
have represented the modulation spectra of each
coefficient which is defined as the Fourier transform
of its temporal evolution (see Nadeu et al., 1997 for
more details).

In this paper we propose filtering the temporal
evolution of each component to achieve robust
ASR systems in wireless environments. In this sec-
tion we first review the main previous works involv-
ing a filtering of the modulation spectra and, after
that, we propose a novel filtering method conceived
to improve the robustness of the ASR systems deal-
ing with wireless speech transmission.

3.2. Previous works

In real world applications, ASR systems often
encounter situations in which a mismatch between
training and testing conditions exists (e.g. noise,
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transmission channel or the intra- or inter-speaker
variations). In such cases, there is a dramatic degra-
dation of the recognizer accuracy.

During the past decades, a variety of techniques
has been proposed for dealing with this type of
problems, such as robust parameterizations, feature
vector adaptation or model compensation. In this
paper, we have focused on the first approach, i.e.,
extracting robust speech features that are relatively
insensitive to different sources of degradation.

For that purpose, it would be desirable that the
front-end of the speech recognition system was able
to keep the linguistic information (the relevant part
in terms of intelligibility) contained in the speech
signal and reject the irrelevant information (for
example, signal distortions due to channel or the
presence of noise). This idea is directly related to
the phenomena observed in several perceptual
experiments in which it is shown that the intelligibil-
ity of speech mostly relies on some bands of the
modulation spectra, while the rest does not seem
to contribute considerably (Drullman et al., 1994;
Greenberg, 1996). Typically, the suppression of
the less important components of the modulation
spectra is accomplished by filtering of time trajecto-
ries of feature vectors.

The RelAtive SpecTrAl technique (RASTA)
(Hermansky et al., 1992; Hermansky and Morgan,
1994) is one of the pioneering techniques developed
in this context. RASTA basically consists in a
band-pass filtering applied in the log-subband
domain, which keeps the modulation frequencies in
the range between 1 and 12 Hz. The low-pass filter-
ing helps to smooth some of the fast frame-to-frame
spectral changes appearing in the spectrum due to
short-term analysis artefacts. The high-pass filtering
was initially designed for minimizing the influence of
convolutional noise (such as distortions due to
microphones or fixed-telephone channels). This
effect can be viewed as that of a linear system, pro-
ducing a non-desired component which is additive
in the log filter-bank energies domain. As the spec-
trum of this kind of noise varies in a different way
than the speech spectrum, it can be removed effi-
ciently by means of the RASTA technique. In fact,
Hermansky and Morgan (1994) showed that the
reduction of this irrelevant information in the para-
metric representation of speech signals significantly
improves the performance of the recognition system.

Hanson and Applebaum (1993) extended the
RASTA approach by applying, in the cepstral
domain, either a high-pass or a band-pass filter.
Moreover, they dealt with distorted-channel, addi-
tive noise and Lombard speech style. They showed
that both, log-subband and cepstral high-pass filter-
ing can improve the ASR system performance when
a mismatch between training and testing conditions
exists. Both approaches produced similar results
because cepstral coefficients are computed using a
discrete cosine transform (DCT), which is a linear
transformation of the logarithmic filter-bank ener-
gies. This result is very appealing because it allows
to successfully apply filtering techniques in para-
meterizations where filter-bank energies are not
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available, such as LPC-based front-ends, as it has
been also shown by Smolders and Van Compernolle
(1993).

Other authors have proposed more sophisticated
filters. For example, in (Nadeu et al., 1997) a cas-
cade of a first-order equalizer and a band-pass filter
(a FIR-Slepian filter) was applied as well to the cep-
strum-LPC domain. The authors encountered that
the enhancement of modulation frequencies around
3 Hz (corresponding roughly to the average syllable
rate of the used database) has a beneficial influence
on the ASR system performance.

Kanedera et al. (1998) provided an interesting
study about the relevance of some bands of modula-
tion spectrum from the recognizer accuracy point of
view. The main conclusions extracted in this work
were the following:

• In clean environments, most of the useful infor-
mation is contained in the frequency band
between 1 and 16 Hz of the modulation spectrum.

• The band around 4 Hz is the most useful compo-
nent in both, clean and noisy conditions (this
result is similar to the one obtained in (Nadeu
et al., 1997)).

• In noisy environments, the components of the
modulation spectrum below 2 Hz and above
10 Hz are less important for speech intelligibility.
In particular, the band below 1 Hz contains
mostly information about the environment (e.g.
the effects due to the transmission channel).
Therefore, the recognition performance can be
improved by suppressing this band in the param-
eterization process.

Some authors (Hanson and Applebaum, 1993;
Nadeu et al., 2001) have stressed the relationship
between the time filtering of speech parameters
and the classical first time-derivative or regression
coefficients and acceleration coefficients (Furui,
1986). In fact, dynamic features can be seen as a
high-pass (in the target bandwidth) filtering of the
static parameters in the cepstral domain, in which
the components around 10 Hz are enhanced. This
interpretation explains their effectiveness to cope
with both, convolutional and additive noises.

3.3. Our proposal: band-pass filtering for wireless

speech recognition

Although more extensively explained later, we find
convenient to mention at this point that the transmis-
sion errors due to wireless communications reach the
speech decoder in two forms: either as residual bit
errors (those still present after channel decoding) or
as frame erasures. In this paper both are jointly con-
sidered, since it is the channel decoder which decides
whether the frame is discarded (and substituted) or
not, depending on the number of bit errors and the
sensitivity of the erroneous bits. Thus, once the bit-
stream has been evaluated by the channel decoder,
the source decoder receives either a clean frame, a
frame with residual errors, or a bad frame indication.
In the last case, this flag triggers the corresponding
frame error concealing mechanism.

The residual bit errors produce unpredictable
changes in the speech spectral features. Thus, the
whole bandwidth of their modulation spectra may
be eventually affected. In other words, the residual
bit errors add certain level of randomness to the
spectral features, i.e., noisy variations in their time
evolution. These time variations generate spurious
components in the modulation spectra.

With respect to frame erasures, we presume that
the spectral envelope (almost exact) repetition per-
formed by the error concealment mechanism
produces both low and high frequencies in the mod-
ulation spectrum. The former due to the steadiness
of the repeated segment, and the later when, after
successive repetitions, a reliable frame reaches the
decoder, likely producing an abrupt time change.

The previous conjectures indicate that a band-
pass filtering of the modulation spectra could help
to focus on the modulation frequencies which, being
relevant for speech intelligibility, are less contami-
nated by the transmission errors.

Furthermore, in order to prove these arguments,
we have estimated the bandwidth of the modulation
spectrum for each MFCC coefficient extracted from
both, clean speech and speech that has suffered from
transmission errors. For these experiments, we con-
sider the bandwidth as the frequency range where
the 90% of the signal energy is contained. Finally,
a channel with a bit error rate (BER) equal to
5 · 10�2 has been used.1 Fig. 2 represents the histo-
gram of the bandwidth computed for the first six
MFCCs where each coefficient was analyzed in a
window-by-window basis.

As shown in Fig. 2, the effect of transmission
errors in the modulation spectra of MFCCs depends
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on the coefficient order. Particularly, observing the
bandwidth histograms for the first two coefficients
we see that, because of the transmission errors, a
larger number of windows exhibit a lower band-
width (the histogram is slightly left-shifted). This
fact indicates that low-frequency components
appear in those modulation spectra due to transmis-
sion errors, since the same percentage of the energy
is concentrated in a smaller bandwidth. On the con-
trary, observing the bandwidth histograms for the
higher coefficients we see that a larger number of
windows show higher bandwidth (the histograms
are slightly right-shifted due to errors).

Therefore, in order to reduce the effects of trans-
mission errors, we propose band-pass filtering the
time trajectory of the spectral parameters to attenu-
ate or remove these undesired low or high frequen-
cies that appear in their modulation spectra.
Although, taking into consideration the histograms
displayed in Fig. 2, the optimal solution seems to be
to high-pass filter the lower coefficients and low-
pass filtering the higher ones, this issue has been left
for further work (preliminary experiments using
individual filters did not work as expected). Instead,
we have chosen to perform the same band-pass
filtering for every coefficient. There are two reasons
to proceed in that way. First, it is easier to imple-
ment. And second, the histograms are showing just
a trend and we have found it better to remove those
frequency bands that can be contaminated and, at
the same time, are not determinant from the intelli-
gibility point of view (in presence of degradations,
modulation frequencies above 10 Hz worsen the rec-
ognition performance and frequency components
under 2 Hz do not yield any improvement and, fur-
thermore, could even degrade it (Kanedera et al.,
1998)).

In this paper we put forward that both low- and
high-pass filtering significantly improve the recogni-
tion performance in presence of transmission errors.
In particular we suggest the replication of the well-
known and well-established high-pass section of the
RASTA filter, and the design of a new low-pass
section to achieve the best balance between preserv-
ing relevant modulation frequencies and mitigating
the effect of the transmission errors.

4. Experimental results

4.1. Experimental setup

4.1.1. Database
The database employed in our experiments is the

well-known resource management RM1 database



Table 1
Characteristics of the half-rate GSM channels used in the
experimentation

Channels BER FER (%) RBER (%)

Channel 0 0 0 0
Channel 1 10�3 0.015 0.0265
Channel 2 10�2 0.479 0.2753
Channel 3 2.5 · 10�2 2.9296 0.8061
Channel 4 5 · 10�2 12.333 2.3222

BER, FER (frame error rate) and RBER (residual bit error rate)
are shown for each channel.

Table 2
Quality bands in GSM

Quality bands BER

0 BER < 2 · 10�3

1 2 · 10�3 < BER < 4 · 10�3

2 4 · 10�3 < BER < 8 · 10�3

3 8 · 10�3 < BER < 1.6 · 10�2

4 1.6 · 10�2 < BER < 3.2 · 10�2

5 3.2 · 10�2 < BER < 6.4 · 10�2

6 6.4 · 10�2 < BER < 1.28 · 10�1

7 1.28 · 10�1 < BER
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NIST (1992), which has a vocabulary of 991 words.
We have used the speaker independent data which is
divided into two groups: the training corpus which
consists of 3990 sentences uttered by 109 speakers
and the test set which contains 1200 sentences from
40 different speakers and corresponds to the compi-
lation of the first four official test sets (February and
October, 1989, February, 1991 and September,
1992). We have used a downsampled version (at
8 kHz) of the database (originally recorded at
16 kHz in clean conditions using a high-quality
desktop microphone). The orthographic transcrip-
tion of the data is based on the SRI resource
management dictionary (provided in the same dis-
tribution by NIST) which has been modified for
adapting it to the CMU phone set as suggested in
the RM task defined in HTK.

Since the database was recorded in a clean envi-
ronment, it is possible to study the effects of the
transmission errors without any interference caused
by other sources of distortions.

4.1.2. Wireless channel model

For the purpose of testing the performance of our
proposal in realistic conditions, we have simulated a
complete GSM scenario which includes not only a
channel model but also the GSM channel coding/
decoding processes. The behavior of the GSM chan-
nel has been simulated for different conditions using
a hybrid model combining both empirical measures
(for modeling shadowing effects produced by the
presence of obstacles like buildings in urban areas)
and theoretical results (for the Rayleigh fading
phenomena related to the mobile speed). The GSM
channel coding/decoding has been implemented
following the ETSI/GSM specifications for half-rate
traffic channels (ETSI Recommendation GSM 6.20,
1999). It includes implementations of the channel
coding (cyclic, convolutional coding) and the blocks
relevant to the arrangement of the digital TDMA
GSM stream (reordering, partitioning, interleaving
and burst formatting). More details about the over-
all GSM channel simulator are given in (Gallardo-
Antolı́n et al., 2005).

The channel model inserts bursty transmission
errors in the bitstream according to the desired bit
error rate (BER). The channel decoder is able to
detect and correct some of these errors or even sub-
stitute a seriously damaged frame by an attenuated
version of the last reliably received one. Therefore,
two different types of errors appear at the input of
the speech decoder: frame erasures and residual bit
errors. The first one is measured in terms of the
frame erasure rate (FER) which is the percentage
of erroneous frames that were replaced by the con-
cealing mechanism and the second one is character-
ized by the residual bit error rate (RBER) which is
the percentage of remaining transmission errors
not corrected or detected in the channel decoding
stage.

Following this procedure, we have designed five
different half-rate GSM channels corresponding to
different channel conditions (BER = 0, 10�3, 10�2,
2.5 · 10�2 and 5 · 10�2). The FER and RBER val-
ues of each channel are listed in Table 1. FER and
RBER are not theoretical values, but experimen-
tally computed ones for the database we have
employed.

These channel conditions have been chosen
taking into account the eight quality bands defined
in the GSM standard (ETSI ETS 300 578, 1999)
shown in Table 2. These quality bands are defined
in accordance to the BER estimated before the
channel decoding.

The fourth band is considered as the one repre-
senting an expected average quality. For this reason
we have chosen channels with a BER around this
band. Specifically, a channel in the third (BER =
10�2), fourth (BER = 2.5 · 10�2) and fifth (BER =
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5 · 10�2) quality bands have been chosen. Besides,
we have tested two channels belonging to the best
band: an error-free (BER = 0, only coding distor-
tion) and a low error one (BER = 10�3).

4.2. Baseline experiments

4.2.1. Front-end

Two parameter sets have been used for the base-
line experiments: MFCCs and LP-MFCCs and
Fig. 3 illustrates the way we have implemented
them.

As can be observed, the difference between both
parameter sets relies on how the speech spectrum
is obtained. In particular, the ‘‘spectral analysis’’
step in the MFCC computation is replaced by the
‘‘pole modeling’’ and ‘‘spectrum envelope computa-
tion’’ steps in the LP-MFCC case. In this last case,
the order of the all-pole model has been experimen-
tally chosen. In particular, we have considered
(always for clean speech) 8, 10, 12, 14 and 16,
Log

DCT

Liftering

Mel–scale filterbank

Spectral analysis

Liftering

Mel–scale filterbank

Log

DCT

   Computation
Spectral Envelope

Pre–emphasis

MFCC analysis LP–MFCC analysis

Pre–emphasis

Pole Modeling

Fig. 3. MFCC and LP-MFCC analysis.
obtaining very similar results above 10. Conse-
quently, we have chosen that order for our
experiments.

In both cases, we use a 25 ms Hamming analysis
window, obtaining 12 coefficients every 10 ms.
These static features are extended with the log-
energy and the corresponding first order delta
parameters.

In those experiments (described further on)
where an additional filtering stage is introduced,
the delta features are calculated from the filtered
sequence of spectral parameters (either MFCCs or
LP-MFCCs). Hanson and Applebaum (1993) show
that calculating the regression parameters from the
filtered ones yields better results. Their experiments
involved filtering either the log-subband energies or
the cepstral coefficients obtained from a PLP
(perceptually based linear prediction) analysis, but
similar results can be expected for MFCCs or LP-
MFCCs.

4.2.2. Back-end

The back-end is based on HMMs (hidden Mar-
kov models). The HTK toolkit Young et al. (1995)
has been used to build the system. Context-depen-
dent acoustic models have been used, namely:
cross-word triphones. A three-state, three-mixture
per state model is used to represent each triphone.
The synthesis of unseen triphones in the training
set was performed through a decision tree method
of state clustering. Models are obtained using either
clean speech (just for reference experiments) or
coded speech, without transmission errors. These
last models are used for every wireless speech recog-
nition experiment, with or without transmission
errors. Finally, the standard word-pair grammar is
used as the language model.

It is important to note that when the temporal
trajectories of the coefficients are filtered the acous-
tic models are trained using those filtered parame-
ters. Thereby, we avoid any possible mismatch
introduced by that filtered stage.

4.2.3. Baseline results
Fig. 4 shows the recognition results, in terms of

word error rate (WER), for the two parameter sets
considered and several channel conditions, namely:
clean speech, speech under coding distortion
(BER = 0) and speech under coding distortion and
transmission errors (BER = 10�3, 10�2, 2.5 · 10�2

and 5 · 10�2). These results will be taken as the
baseline for future comparisons.
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From these experiments we draw our first conclu-
sion: MFCCs achieve slightly better performance
for clean speech but LP-MFCCs are superior when
coding distortion and transmission errors are
considered. Furthermore, as the channel conditions
worsen the performance improvement becomes
more significant. This is very likely to the smoother
spectral envelope obtained due to LP analysis
carried out as a part of the LP-MFCC parameteri-
zation procedure.

4.3. MFCC bandwidths

Before designing low- and high-pass sections to
filter the time sequences of the MFCCs, we have
analyzed which are the most relevant bands of their
modulation spectra (we assume that those corre-
sponding to LP-MFCCs will be quite similar). A
block diagram of the process involved in that band-
width estimation for every coefficient is represented
in Fig. 5 and summarized as follows (Peláez-
Moreno et al., 2002):

• First, 12 MFCC coefficients (MFCC_i[nf], where
i = 1,2, . . . , 12 and nf is the time index) are
extracted from clean speech. This process is sim-
ilar to the one explained in Fig. 1 but, in this case,
a very small frame period is used. As a result, the
temporal trajectory of the MFCC parameters is
oversampled in order to avoid any possible alias-
ing effect that could affect the bandwidth estima-
tion process. Note that this frame period is just
used for bandwidth estimation and not for
speech recognition.

• Second, we analyze the individual time sequences
corresponding to every MFCC coefficient using
long Hamming windows. Specifically, we use
windows with a duration equal to 2 s and with
a 50% of overlap between neighboring windows.
On the one hand, such a long window imposes a
very poor time resolution; but, on the other
hand, the frequency resolution is high, making
possible to estimate bandwidths with an accuracy
around 1 Hz as required by this problem.
Then, the power spectral density is computed for
each window. Those signals are represented in
Fig. 5 under the notation PSD_i[k,nw] (i = 1,2,
. . . , 12) where k represents the frequency modula-
tion index and nw represents the time index that
corresponds to the current window.

• Third, we compute the mean power spectral den-
sity (PSD_i[k], i = 1,2, . . . , 12) making an average
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over all the power spectral densities. From this
mean power spectral density we compute what
we call effective bandwidth (EBW), that is, the
bandwidth within which a specific fraction of
the spectral power is concentrated. For example,
a 90% EBW refers to the bandwidth containing
the 90% of the energy of the current signal
(EBW_i, i = 1,2, . . . , 12 in Fig. 5).

A similar estimation procedure is employed with
the log-energy coefficient extracted from the speech
signal.
Energy MFCC 2 MFCC 4 MFCC 6
5
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35
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Fig. 6. Ninety percentage effective bandwidth (
Finally, in Fig. 6 we have depicted the 90%
EBWs for the log-energy and the 12 MFCCs. From
that figure, it is clear that the EBW of the MFCCs
increases with the coefficient order, starting around
9 Hz for the log-energy and 11 Hz for the first
MFCC and ending around 32 Hz for the 12th
MFCC.

4.4. Low-pass filtering

In Section 3.3 we advocated the convenience of
band-pass filtering the modulation spectrum of each
 MFCC 8 MFCC 10 MFCC 12

EBW) of the log-energy and 12 MFCCs.
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coefficient in order to find a robust parameter set.
We design our filter in two steps: first, a tailored
low pass section is build to cope with transmission
errors and, second, a high pass section is added. This
two stage filter design allow us to weight up the con-
tribution of each section into the final results.

The design of the high-pass section will be pre-
sented in Section 4.5 while the low-pass section is
introduced in the current section.

4.4.1. FIR filters

Though previously reported results concerning
the MFCC bandwidths suggest to use a different fil-
ter for every coefficient, some preliminary results did
not indicate a clear advantage of using different fil-
ters. Actually, similar results were found using the
same filter for every coefficient that do not justify
the increment of complexity involved in the use of
different filters.

Thus, using the same filter for every coefficient,
we have assessed the effectiveness of low-pass filter-
ing the two reference parameter sets, MFCC and
LP-MFCC, for several channel conditions. We have
finally employed an FIR filter; nevertheless, the use
of an IIR filter is briefly examined in the next
   Log–energy

MFCC

M

M

M
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analysis

Fig. 7. MFCC

LP L
c

representation
LP

speech signal
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   Log–energy
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section. Figs. 7 and 8 illustrate the whole schema
embedding the filtering stage of MFCC or LP-
MFCC parameter set, respectively.

To gain insight on the more desirable character-
istics (order and cutoff frequency) of the sought fil-
ter, its effectiveness (in terms of recognition
accuracy) has been assessed for the following set
of parameters and conditions:

• Order: 10, 20 and 30.
• Cutoff frequency (Hz): 8, 10, 12, 18, 24, 30.
• Environment: Clean speech, BER = 0, 10�2,

2.5 · 10�2, 5 · 10�2.

concluding that a 20th-order filter with a cutoff fre-
quency of 12 Hz is the one that achieves the best
results. Although a 20th-order filter seems to be
too high considering the potential ‘‘time spreading’’
(the impulse response extends over 200 ms), the
achieved improvement (as will be shown below)
under coding distortion and transmission errors is
high enough to consider the selected filter order as
a good trade-off.

It is worth noting that the selected cutoff fre-
quency is close to the ones found by other authors
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like Nadeu et al. (1997) or Kanedera et al. (1998). If
we relate this cutoff frequency with the bandwidth
estimation made in the previous section (Fig. 6),
we observe that the chosen cutoff frequency allows
almost the whole spectral power of the first four
coefficients to remain, while turning out quite selec-
tive for the remaining coefficients. In other words,
this low-pass filter, in addition to removing the high
frequencies of the modulation spectra, performs
some type of liftering by attenuating the higher-
order coefficients.

Fig. 9 shows the results for the two filtered param-
eter sets, LPF-MFCC (low-pass filtered MFCC) and
LPF-LP-MFCC (low-pass filtered LP-MFCC).
Besides, for comparison purposes, the results corre-
sponding to the unfiltered ones are also shown.

From these results, we extract the following
conclusions:

• Low-pass filtering the parameter set is beneficial
from the recognition point of view. Even without
any distortion, filtering the MFCC coefficients
leads to some improvements. And what is more
important, improvements increase as channel
conditions worsen.

• When some kind of distortion is present, the best
results are achieved by LPF-LP-MFCC. In par-
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0
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Fig. 9. WER achieved for LPF-MFCC and LPF-LP-MFCC and t
ticular, the relative reduction of the WER with
respect to LP-MFCC has a mean of 11.9%.

4.4.2. IIR filters

Lower-order IIR filters can be as selective as the
chosen 20th-order FIR filter. Therefore, at least
from the computational point of view, it is worth
trying IIR filters. However, as long as the design
of a computationally efficient implementation is
not the aim of this paper, we have only conducted
some preliminary experiments to explore if IIR
filters should be considered in the future.

In particular, we have tested a fifth order Butter-
worth IIR filter with a cutoff frequency of 12 Hz.
This filter was assessed only for the LP-MFCC
parameter set (so far, the most successful). The
results are slightly lower than the ones obtained
with a FIR filter. Therefore, IIR filters could be con-
sidered as an alternative and computationally more
efficient implementation.

4.5. Band-pass filtering

In this section we have evaluated the benefits of
the inclusion of a high-pass section to deal with
coding distortion and transmission errors.
 10 BER = 2.5×10 BER = 5×10–2 –2 –2

he corresponding unfiltered versions, MFCC and LP-MFCC.
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We start evaluating the performance of the
RASTA-PLP method, a very well-known technique
which performs a band-pass filtering in the log-
spectral domain. In order to make the differences
between the filtering stage in RASTA-PLP and
the proposed filtering of MFCCs or LP-MFCCs
clear, we briefly compare RASTA-PLP with LPF-
MFCC and LPF-LP-MFCC in the following
section.

We have also empirically compared RASTA-
PLP with LPF-LP-MFCC for several channel
conditions. As shown below, RASTA performs bet-
ter for lower BERs (easy channels) while LPF-LP-
MFCC turns out to be superior for higher BERs
(difficult channels). These results reveal two conclu-
sions: (1) the high-pass section of RASTA-PLP is
beneficial; and (2) the low-pass section should be
sharper for medium and high BER channels.

4.5.1. RASTA-PLP (RelAtive SpecTrAl-
perceptually-based linear prediction)

Fig. 10 illustrates the block diagram of RASTA-
PLP (Hermansky and Morgan, 1994) computation.
Below follows a brief review of the goal of each
block and its relation with those involved in MFCC
and LP-MFCC computation (Fig. 3).

• Spectral analysis: The same as the one used in the
MFCC analysis.

• Critical band analysis: This stage matches up
with the ‘‘Mel-scale filterbank’’ although the
weights are different.

• LOG (logarithm): It transforms a convolutional
distortion into an additive one.

• Band-pass filtering filters the time trajectories of
the log-subband energies. The RASTA filter has
the next transfer function:

HðzÞ ¼ 0:1z4 2þ z�1 � z�3 � 2z�4

1� qz�1
ð1Þ

As shown in this expression, the RASTA filter
has four zeros and one pole (q). Originally, this
pole was set to 0.98 by the authors of RASTA
(Hermansky and Morgan, 1994) but they also
tried with different values.
• EXP (exponential): Inverse of the previous loga-
rithmic operation.

• Equal-loudness pre-emphasis: This step can be
compared to ‘‘pre-emphasis’’ in MFCC. The goal
is the same in both cases: to take into account the
different sensitivity of the human hearing system
to different frequency bands.
• Intensity-loudness power law: The spectrum
magnitude is comprised aiming at replicating
the human hearing behavior by simulating the
relationship between intensity and tonality (per-
ceived intensity). In MFCC and LP-MFCC
parameter sets this goal is pursued by the
‘‘Log’’ operator.

• Pole modeling: The spectral envelope is esti-
mated. In our experiments, the model order was
experimentally chosen to be 12 after having
tested several orders (8, 10, 12, 14 and 16) for
both clean and distorted (coding distortion and
transmission errors) speech.

• Cepstral analysis: The same as the one in the
MFCC or LP-MFCC analysis.
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In comparison with PLP, RASTA includes a fil-
ter stage in the logarithmic spectral domain, which
is implemented through three steps: ‘‘LOG’’, ‘‘band
pass filtering’’ and ‘‘EXP’’.

With respect to MFCC and LP-MFCC, the main
differences are found in how the speech spectral
envelope is estimated and how the human hearing
behavior is taken into account.

Several pole values of the RASTA filter (q in Eq.
(1)) have been experimentally tested. We test values
from 0.5 till 0.98 for both, clean and distorted-cod-
ing and transmission errors-speech. We observed
that as the pole position gets closer to one, the
results improve. However, for the highest pole posi-
tions the differences were not significant and, conse-
quently, we have fixed the pole position, q, to a
value equal to 0.98.

Fig. 11 compares the word error rates achieved
by PLP, RASTA-PLP and LPF-LP-MFCC for sev-
eral channel conditions. On the one hand, the
RASTA band-pass filter yields clear improvements
with respect to PLP when coding distortion and
transmission errors are considered. On the other
hand, LPF-LP-MFCC turns out to be better than
RASTA-PLP for channels with BERs equal or
higher than 2.5 · 10�2, while RASTA-PLP is the
best solution for lower BERs.
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Fig. 11. WER: comparative assessment of PL
The last results allow us to draw two main
conclusions:

• RASTA filter is effective to deal with coding dis-
tortion and transmission errors.

• Low-pass section of RASTA filter is not as selec-
tive as required for medium and high BERs.

The last conclusion leads us to propose a new
approach combining a high-pass section similar to
that of the RASTA filter, and a low-pass section
similar to the one suggested for filtering the LP-
MFCCs.

4.5.2. Combining the high-pass section of RASTA-

PLP with a sharper low-pass section

A band-pass filter has been designed combining
the high-pass section of the RASTA filter (with
the pole at q = 0.98) and a low-pass section similar
to that of the 20th-order FIR filter proposed for
LPF-LP-MFCC. The band-pass filter so conceived
has been implemented using 20 zeros and 1 pole.
Fig. 12 shows the frequency amplitude response of
this filter. The phase has been chosen to be linear.

We have tested this new filter in two different
configurations: (1) for filtering the LP-MFCC
parameter sets in the same way that we had
BER = 10 BER = 2.5×10 BER = 5×10–2 –2 –2

P, RASTA-PLP and LPF-LP-MFCC.
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proposed the first low-pass filtering, as illustrated in
Fig. 8. Henceforth, we call this approach BPF-LP-
MFCC (band-pass filtering LP-MFCC). And (2)
as an alternative to the band-pass filtering of
RASTA-PLP. From now on M-RASTA-PLP
(modified-RASTA-PLP).

Fig. 13 shows the performance, in terms of word
error rate, of BPF-LP-MFCC in comparison with
LPF-LP-MFCC for several channel conditions
(results for LP-MFCC have also been depicted for
reference). As it can be observed, BPF-LP-MFCC
always yields the best results, with relative improve-
ments (with respect to LPF-LP-MFCC) going from
2% for a BER of 0 to 14% for a BER of 5 · 10�2

(for clean speech the relative improvement is equal
to 6%). Therefore, it can be concluded that the
high-pass section of the filter is also beneficial for
speech recognition in wireless environments. Fur-
thermore, the advantage due to the high-pass sec-
tion is higher as the channel conditions worsen. In
particular, the improvements are statistically signif-
icant2 for BERs of 2.5 · 10�2 and 5 · 10�2.
2 We have stated the statistical significance of the results
calculating the confidence intervals, for a confidence of 95% (see
Weiss and Hasset (1993, pp. 407–408), for details).
The results, again in terms of word error rate,
corresponding to M-RASTA-PLP in comparison
to RASTA-PLP for several channel conditions are
shown in Fig. 14 (those achieved by PLP have also
been included for reference). In this case, parallel
conclusions can be drawn: M-RASTA-PLP is
always better than RASTA-PLP and the improve-
ment due to the new low-pass section of the filter
is higher as the BER of channel increases. In partic-
ular, the improvements are statistically significant
for BERs of 2.5 · 10�2 and 5 · 10�2.

Finally, Fig. 15 shows a comparison between the
two approaches, BPF-LP-MFCC and M-RASTA-
PLP. Although the differences are not statistically
significant, the trends are very clear: BPF-LP-
MFCC is superior for higher BERs while M-
RASTA-PLP is the best solution for lower BERs.
We think that these results are due to the place
where the pole modeling is performed. In the PLP
parameter set, the pole modeling is done in its latest
stages while, in the LP-MFCC parameter set, it
takes place at the beginning. Although further work
should be done for extracting a clear conclusion,
our first intuition is that the smoothing step per-
formed by the pole modeling should be done earlier
for channels with high BERs.
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5. Conclusions and directions of further work

In this paper we have tackled the problem of
speech recognition in a wireless environment, pay-
ing special attention to coding distortion and trans-
mission errors. Our work is inspired in previous
works that suggested filtering the modulation spec-
tra of the recognition features to deal with chan-
nel-distorted or noisy speech. We have applied and
adapted these ideas to the distortions typical of
wireless speech communications.

Our work starts proposing a low-pass filtering of
the recognition features to remove the potential arti-
ficial high frequencies appearing in their modulation
spectrum due to transmission errors. To assess our
proposal, we establish two baseline parameter sets,
namely, MFCCs and LP-MFCCs. Those experi-
ments, using either MFCCs or LP-MFCCs, showed
that LP-MFCC is preferable to MFCC when coding
distortion and transmission errors are considered.
And, furthermore, the corresponding low-pass fil-
tered parameter sets, called LPF-MFCC and LPF-
LP-MFCC, turn out to be better than the original
(unfiltered) ones. In particular, LPF-LP-MFCC
provides the best results.

In order to compare our proposal with other pre-
vious works, we have also assessed the performance
of RASTA-PLP, a well-established filtering-based
technique, in the context of wireless speech commu-
nications. The results achieved by RASTA-PLP in
comparison to those of LPF-LP-MFCC allow us
to draw the following conclusions: (1) the high-pass
section of the RASTA-PLP band-pass filter yields
improvements in the recognition performance in
presence of coding distortion and transmission
errors; and (2) the low-pass section of the same filter
is not sharp enough to deal with this type of distor-
tions, especially for medium and high BERs.

Motivated by this last conclusion, we have
designed a band-pass filter combining the high-pass
section of RASTA-PLP with the low-pass section
that we had proposed for filtering LP-MFCC. This
novel filter has been applied in two configurations:
(1) as an alternative to the low-pass filtering
proposed to filter the LP-MFCC, called BPF-LP-
MFCC and (2) as an alternative to the band-pass
filter of RASTA-PLP, leading to what we have
called M-RASTA-PLP.

The experimental results indicate that the novel
band-pass filter provides better results than previous
filters, in both configurations, when coding distor-
tion and transmission errors are considered, espe-
cially for medium and high BERs. In particular,
M-RASTA-PLP is superior to RASTA-PLP for
almost every channel conditions and BPF-LP-
MFCC is always better than LPF-LP-MFCC. In
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both cases, the improvements are statistically signif-
icant for the two highest BERs.

Finally, we have compared M-RASTA-PLP and
BPF-LP-MFCC to conclude that, although both
parameter sets yield similar results, it seems clear
that M-RASTA-PLP should be selected for low
BERs while BPF-LP-MFCC is the best option for
high BERs. Although further work is needed to
extract a clear conclusion, our first impression
points at the position of the pole modeling stage
as the responsible of that behavior: when BER is
high (the distortion is high), it seems better to carry
out the pole modeling at the first stages (as in LP-
MFCC) of the feature extraction procedure.

We suggest four lines of research for further
work. First of all, we would like to extend the exper-
iments using the new AMR speech coder. Second,
we plan to assess the proposed filter when, besides
coding distortion and transmission errors, additive
noise is also present. Third, the use of IIR filters
should be explored in more detail. In addition, the
use of different filters for each coefficient should be
further investigated.
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Gallardo-Antolı́n, A., Peláez-Moreno, C., Dı́az-de-Marı́a, F.,
2005. Recognizing GSM digital speech. IEEE Trans. Speech
Audio Process. 13 (6), 1186–1205.

Greenberg, S., 1996. Understanding speech understanding –
towards a unified theory of speech perception. In: Proc. of the
ESCA Tutorial and Advanced Research Workshop on the
Auditory Basis of Speech Perception, pp. 1–8.

Hanson, B.A., Applebaum, T.H., 1993. Subband or cepstral
domain filtering for recognition of Lombard and channel-
distorted speech. In: Proc. IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP-93), Vol. 2,
pp. 79–82.

Hermansky, H., Morgan, N., 1994. RASTA processing of speech.
IEEE Trans. Speech Audio Process. 2 (4), 587–589, Oct.

Hermansky, H., Morgan, N., Bayya, A., Kohn, P., 1992.
RASTA-PLP speech analysis technique. In: Proc. IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP-92), Vol. 1, pp. 121–124.

Hirsch, H.-G., 2002. The influence of speech coding on recog-
nition performance in telecommunication networks. In: Proc.
International Conference on Spoken Language Processing
(ICSLP-02), pp. 1877–1880.

Junqua, J.C., 2000. Robust Speech Recognition in Embedded
Systems and PC Applications. Kluwer Academic Publishers,
2000.

Kanedera, N., Hermansky, H., Arai, T., 1998. On properties of
modulation spectrum for robust automatic speech recogni-
tion. In: Proc. of IEEE International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP-98), Vol. 2, pp.
613–616.

Kim, H.K., Cox, R.V., Rose, R.C., 2002. Performance improve-
ment of a bitstream-based front-end for wireless speech
recognition in adverse environments. IEEE Trans. Speech
Audio Process. 10 (8), 591–604.

Kiss, I., Lakaniemi, A., Yang, C., Viikki, O., 2003. Review of
AMR speech codec- and distributed recognition-based
speech-enabled services. Proc. ASRU, 613–618.

Lilly, B.T., Paliwal, K.K., 1996. Effect of speech coders on speech
recognition performance. In: Proc. International Conference
on Spoken Language Processing (ICSLP-96), Philadelphia,
USA, Vol. 4, pp. 2344–2347.

Nadeu, C., Pachés-Leal, P., Juang, B-H., 1997. Filtering the time
sequences of spectral parameters for speech recognition.
Speech Commun. 22 (4), 315–332.



1398 J. Vicente-Peña et al. / Speech Communication 48 (2006) 1379–1398
Nadeu, C., Macho, D., Hernando, J., 2001. Time and frequency
filtering of filter-bank energies for robust HMM speech
recognition. Speech Commun. 34, 93–114.

NIST, The Resource Management Corpus (RM1). Distributed
by NIST, 1992.
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