
Strategies to reduce design time in multimodal/multilingual dialog applications
L.F. D’Haro, R. Córdoba, R. San-Segundo, J.M. Montero, J. Macías-Guarasa, J.M. Pardo

Grupo de Tecnología del Habla. Departamento de Ingeniería Electrónica. Universidad Politécnica de Madrid
E.T.S.I. Telecomunicación. Ciudad Universitaria s/n, 28040 Madrid, Spain

{lfdharo, cordoba, lapiz, juancho, macias, pardo}@die.upm.es
http://www-gth.die.upm.es

ABSTRACT
In this paper, we present a complete platform for the
semiautomatic generation of human-machine dialog systems,
that using as input a description of the database of the service,
a flow model with the different states of the final application
and a guided interaction step by step with the designer’s
intervention, generates dialogs to access the service data in
different languages and two modalities, speech and web,
simultaneously. We describe in detail several strategies that
have been followed to reduce the time needed to do the design
using the mentioned information. We also address important
issues in dialog applications as mixed initiative and
overanswering dialogs, confirmation handling and how to
provide the user long lists of information.
Keywords: automatic dialog systems, automatic
generation, multimodality, multilinguality, speech
recognition, XML.

1. Introduction
The Gemini project1 (Generic Environment for Multilingual
Interactive Natural Interfaces), is a two year project that is just
finishing with the following partners: Knowledge S.A.
(Greece) as coordinator, Patras University – WCL (Greece),
TEMIC SDS (Germany), UPM – GTH (Spain), FAW
(Germany) and Egnatia Bank (Greece). It exploits the results
obtained in the IDAS project ([1][2]) and from real-world use
of similar systems, to create a generic platform for the
development of user-friendly, natural, high quality, intuitive,
platform independent, multilingual and multi-modal
interactive interfaces to a wide area of databases employed by
information service providers.
The main objective of the project has been the development of
a platform able to generate dialog applications in a semi-
automatic way that are able to handle several languages and
several modalities at the same time. This generation should be
done with a minimum of cost and human effort. You can see a
more detailed description of the work done in the project in [3]
and in another paper submitted to the conference. In this
paper, we are going to concentrate in all the strategies
followed to automate the design and fulfil the main promise
we made for the project: automate dialog design.
The dialog generator is a task oriented based system that
allows the creation of fixed subtask initiative dialogs [4], and
follows a similar approach to the Agenda [5] system (now

1 This work was partly supported by the European Com-
mission’s Information Society Technologies Programme under
contract no. IST-2001-32343. The authors are solely
responsible for the contents of this publication.
Refer to the GEMINI Project Homepage on
www.gemini-project.org for further details.

RavenClaw [6]) from Carnegie Mellon University; in this
sense, the designer can build the service using a hierarchical
representation of the task and their subcomponents, providing
maintainability and scalability, and where each state is
expressed as a form-filling task including also information
regarding its constraints and optional slots. Moreover, the
platform uses some ideas from the USI (Universal Speech
Interface [7]) project that are applied for the generation of
names of the automatically generated dialogs; the names are
derived from the attributes of the database. Also, the assistant
creates a XML-based document that allows an easy edition,
parsing and specification of the system information structure.
Finally, in order to allow different kinds of confirmation, we
have selected four types: none, explicit, implicit and no match,
based on the confidence value of the recognition.
First, we will make a rough description of the platform
architecture to locate the places where dialog design is made
and describe which are the sources that are used to automate
the design. Then, we will focus on our dialog design modules
and how the applications are modeled.
Throughout this article, we will call “user” to the final client
of the system, and “designer” to the person that will build the
dialog system.

2. Application Generation Platform
The Application Generation Platform (AGP) is the platform
used to generate multi-modal dialog applications. The AGP is
an integrated set of assistants and tools. Its open and modular
architecture simplifies the adaptability of applications
designed with the AGP to different use cases. We had several
objectives in mind when building the AGP:

• Minimum effort for the designer.
• Standardization. All models generated by the AGP are

described in GDialogXML (GEMINI Dialog XML),
which is an object-oriented abstract dialogue modeling
language [8]. The output is xHTML scripts for Web
applications and VoiceXML 2.0 scripts for voice. So, the
designer does not need to know any of these languages.

• All models in the AGP can be saved as libraries.
• Service/application independency.

2.1 AGP architecture
The AGP consists of three layers:

1. Top level. The designer specifies the global aspects
related to the application and the data. It has 3 assistants.

Application description assistant: the basic characteristics of
the application are defined, as the languages, modalities,
libraries that will be used, etc.
Data modeling assistant: the database classes and their
attributes are specified. The use of libraries and the graphical
view simplifies the process. The output is the Data Model.

Data connector modeling assistant: the functions to access the
database are defined. The objective is that the application is
independent of the specific database.

2. Intermediate level. The dialog is defined in a modality
and language independent way. It has 3 modules:

State flow assistant (SFA). Here, the states of the dialog are
specified (and which states are called from each state) and
what slots of information are asked to the user in each state.
To specify the slots, attributes from the Data Model are always
offered to speed up the design. It is a very high level definition
of the dialog.
Retrieval modeling assistant (RMA). Using the information
specified in all previous assistants, the designer describes the
dialog details. It is the most complex assistant and where a
bigger effort has been made to provide flexibility and easiness
to the designer, so it is described in detail in section 3.1.
User modeling assistant. Defines the behavior of the system
according to the experience of the user (e.g., novice, expert,
default, etc.)

3. Bottom level. The dialog is completed with all aspects
that are language and modality dependent. It has the
following modules:

Modality extension assistant: the dialog is completed with
modality dependent aspects, as confirmation handling in user
input and list handling for user output. (See section 3.2).
Language extension assistant: the language is completed with
language dependent aspects, as the prompts (including SSML
tags) or recorded speech, the vocabularies and grammars, etc.
Dialog model linker: links the results of the previous assistants
to generate the final dialog model. There is no interaction with
the designer.
Then, the AGP generates automatically the scripts in
VoiceXML for voice and xHTML for web applications.
There are two more tools in the architecture: a Language
modeling tool, where the language models can be specified in
the JSGF format, and the Vocabulary builder, where the
vocabularies used in the runtime recognizer are prepared.

3. Dialog modeling
We are going to describe in more detail the assistants more
related to dialog modeling and the strategies that we have
followed to streamline the definition of a dialog.

3.1 Retrieval modeling assistant (RMA)
This assistant is critical, as it is where the dialog is defined in
detail. So, it has to be intuitive and has to automate the design,
reducing designer effort. As the result has to be modality- and
language-independent, we work at a concept level. In Figure 1
we can see the main window of the assistant, with a banking
application and its tree-structured diagram flow. It is the result
of reading the Dialog flow assistant (SFA), and all dialogs can
be edited and completed just double-clicking. We use different
colors to indicate if the dialog has been edited or not, the
dialog type, if it is a procedure, etc.

Figure 1. RMA main window.

Now, we will describe in detail which strategies have been
applied to speed up dialog design:

1. Several dialogs are automatically created and proposed to
the designer which can be drag & dropped anywhere in
the assistant: to obtain information from the user (called
DGet) and to provide info to the user (called DSay).

DGet and DSay dialogs are based in information from the
Data Model (classes and attributes defined for the service).
For each class and attribute we generate a DGet and a DSay
dialog, which include a tag used by the Language extension
assistant to know that the prompt to be presented to the user
(for DSay) and the grammar used by the recognizer (for DGet)
have to be specified.
We generate several DSay dialogs: a ‘DSay class’, that lets the
selection of specific attributes for the prompt; a ‘configurable
DSay’ for generic prompts; a DSay for each value returned by
a database access function; and some predefined DSay’s:
welcome to the user, goodbye, etc.
Besides the DGet and DSay dialogs, the designer can drag &
drop other actions: dialogs from loaded libraries and database
access functions. In Figure 2 we can see the auxiliary screen
of the RMA, which the designer can use to drag & drop all the
dialogs mentioned here.

Figure 2. Auxiliary screen of the RMA.

We also provide Dialog Templates to have more complex
DGet or DSay dialogs: the designer can create custom dialogs,
where we offer the attributes of a particular class and the
designer can select those that he needs. Moreover, the object
references in the classes are expanded.

2. We make the most of the info from previous assistants.
Besides the Data Model info used to generate automatic
dialogs, the main source of the RMA is the output of the State
flow assistant (SFA). For each state a dialog is automatically
generated. When that dialog is edited, an “SFM proposals”
window pops up (see Figure 3), where all info specific to that
state is offered to the designer and he does not waste time
looking for dialogs in Figure 2 window. It consists of 4 parts:

• Slots asked in the state and next states in the flow.
• State specific DGets: obtained using the slot information

(all DGets with a similar name to the slot.)
• Database access functions whose input parameter/s

matches any slot of the state.
• State specific DSays: they have as input some value

returned by the preceding functions or the slot.

Figure 3. “SFM proposals” window.

In Figure 3 you can see how the dialogs that the designer will
need to provide currency information are easily accessible:
DGet for CurrencyName to ask the user for the desired
currency, followed by PGetCurrencyByName to access the
database and get the currency information, some DSays to
provide the results of the database access, and finally a call to
the next dialog (e.g., AskOtherExchangeRates).

3. The passing of arguments between dialogs is automated.
This is a critical aspect of dialog design. Several dialogs have
to be ‘connected’ as they use the info from the preceding
dialog. In typical situations, e.g. to obtain the balance of an
account, three dialogs have to be connected. First, we need
data from the user (account number). As it belongs to the Data
Model, we just need to drag & drop the corresponding DGet.
Then, we need the database access function that obtains the
account balance from the account number. Again, we just drop
it. And finally, we provide the account balance to the user,
which is a predefined DSay. In all cases, variable passing is
automated, as the correct variable names are proposed to the
designer, who just has to Accept them.

4. Dialog types allowed
The user can add several types of dialogs to configure the
service. We have considered four basic types: based in a loop,
in a sequence of actions (or subdialogs), in information input
by the user, and in the value of a variable (a switch
construction). As well, we allow empty dialogs, used to
specify the call to a dialog that will be defined afterwards; this
way, dialogs can be defined following a top-down strategy.
Another possibility we offer is dialog cloning, useful when the
dialog to be defined is very similar to an existing one.
Besides the possibility to drag & drop the automatic dialogs,
several actions can be executed in all these dialogs:

• Define local and global variables
• Insert calls to other dialogs
• Insert if-then-else structures
• Insert switch-case structures
• Insert loops inside the dialog
• Insert assignments for the variables, including a

mathematical and strings assistants.
And all these actions can be done without writing anything in
our internal syntax [8]. User input is reduced to a minimum.

5. Unified GUI and hotkeys
The GUI used for all dialogs has been unified, offering the
possibility to add all mentioned actions in the same way and a
recursively (loops – if-then – switches, etc., combined).

6. Mixed initiative and overanswering
The designer can decide if the application will be “system
initiative” or “mixed initiative” just selecting a checkbox. For
mixed initiative, we need to let the user input two or more
slots in the same prompt. We have considered two situations:

• Mixed initiative: the system asks two or more slots in the
same prompt.

To define a dialog as mixed initiative, the designer just has to
define the slots as such in the SFM, and the RMA will
generate automatically a DGet for mixed initiative, which the
designer just drops in the relevant window. That is all.

• Overanswering: the system asks one slot but the user
answers with additional slots that would have been asked
in a later dialog.

For overanswering, whenever the designer drops a DGet he is
asked if he wants to define as overanswering slot any other
slot defined in the current state or in the following states in the
flow. In the real time system, before every DGet the system
checks if the slot is already set (as would happen if the user
has said it in a previous prompt). If it is set, the system would
skip the prompt.

3.2 Modality extension assistant for speech
We take care here of dialog aspects which are specific of a
speech application, and so they have to receive a different
treatment than in web. The main reason, of course, is that the
amount of information that can be provided using speech is
much smaller.

3.2.1 Presentation of lists of objects
Lists of objects, which are usually the result of a database
query, mean a lot of information. So, they need special

treatment in a speech application. We distinguish four cases as
a function of the number of elements of the list.

1. The list is empty.
The system indicates the user that there is no info available
and then jumps to a state selected by the designer where he is
asked again some slots looking for a less restrictive query.

2. The list has one item.
The designer defines a configurable DSay that provides
complete or partial info from the item found.

3. More than one item and less than a maximum allowed.
This is the more complex situation, as the items have to be
provided in groups. As the object may have many attributes,
we let the designer specify the attributes from each object that
have to be played to speed up the process. After playing the
info in each group, the user is asked if he wants to continue,
repeat the group, begin from scratch, exit or select a specific
item to receive more detailed information. When the user
selects the item he desires, we play more complete object
information.
One situation that we face is when the system finishes reading
the whole list and the user does not like any item or has exited
before the end of the list. In this case, the system informs the
user and repeats the case 1 process.
The designer has also the option to inform the user how many
items are there in the list, and the user can choose how many
he wants to listen to. This way, he can reduce dynamically the
length of the information provided.

4. More items than the maximum allowed.
As there are too many items, the search has to be more
restrictive. We can have two different situations. First, if all
slots of the application are already filled, the user has to
change some of them to make them more restrictive (e.g., he
wants to fly next week but there are too many flights); the
designer specifies those slots and the questions are repeated.
In the second case, if there are still some slots to be asked the
system continues with the normal dialog flow until the next
database query.
We have also considered a simplified case: when the list
depends only on one slot input by the user. In this case, we
present a simplified version of the previous windows where
the designer does not need to specify the slots to be unset.
All the values that determine the behavior of list presentation,
as the maximum number of items allowed, are user-level
dependent, so they are assigned dynamically in the real-time
system according to the User Model.

3.2.2 Confirmation handling
The result of speech recognition has to be confirmed before
making a database query. We confirm both normal slots and
overanswering slots. We have considered two types of
confirmation in our assistant: Simple and Complete. Simple is
recommended for dialogs with a very high confidence, as
Yes/No or passwords questions. Complete uses several levels
of confidence to determine the confirmation type: none,
implicit, explicit or repeat the question (like in a no match
situation).
The assistant selects automatically the input dialogs (DGet),
decides which should be Simple and which Complete (the
designer can change it) and generates the flow to do all the

confirmation types, all in a transparent way to the designer.
Internally, the assistant also generates confirmation dialogs
that are used to make implicit/explicit confirmations.
The assistant also controls where implicit confirmation should
not be allowed. For example, if the next step in dialog flow is
the database access, explicit confirmation should be used
regardless of the confidence level. Moreover, the assistant
determines automatically where to jump to in case the user
rejects the implicit confirmation (the rejection is detected in
the following state in the flow).

4. CONCLUSIONS
We have developed a dialog generation platform which is both
powerful and flexible, and at the same time provides a high
degree of automation. It is able to generate in a semi-
automatic way dialogs valid for multiple languages and two
modalities using just a description of the database, a basic
state flow of the application and a simplified user-friendly
interaction with the designer.
We have shown several strategies to speed up the design
process using automatic dialogs, automating the passing of
arguments and allowing the definition of any dialog or
construct. We have also included the possibility to handle
mixed initiative and overanswering dialogs using the same
framework. Detailed procedures to handle list and
confirmation handling have been presented too.
The result is an open and portable platform that can be used to
generate quickly dialog applications.

5. REFERENCES
[1] Lehtinen, G., S. Safra, …, J.M. Pardo, R. Córdoba, R.

San-Segundo, et al. “IDAS: Interactive Directory
Assistance Service”, VOTS-2000 Workshop, Belgium.

[2] R. Córdoba, et al. “An Interactive Directory Assistance
Service for Spanish with Large-Vocabulary Recognition”,
Eurospeech 2001, pp. 1279-1282.

[3] Hamerich, S. W., V. Schubert, V. Schless, R. Córdoba,
J.M. Pardo, L.F. d’Haro, B. Kladis, O. Kocsis, S. Igel.
“Semi-Automatic Generation of Dialogue Applications in
the GEMINI Project”, Sigdial 2004.

[4] Hearst M. A, Allen J, Horvitz, E, Guinn C. 1999. “Mixed-
initiative interaction”. IEEE Intelligent Systems, Vol
14(5): pp.14-23.

[5] Rudnicky, A. and Xu W. “An agenda-based dialog
management architecture for spoken language systems”.
IEEE ASRU Workshop 1999: pp I-337-340.

[6] Bohus, D. and Rudnicky, A. “RavenClaw: Dialogue
Management Using Hierarchical Task Decomposition and
an Expectation Agenda”. Eurospech 2003: pp 597-600.

[7] Toth, A.R. T. K. Harris, et al. “Towards every-citizen’s
speech interfaces: an application generator for speech
interfaces to databases”. ICSLP 2002, pp. 1497–1500.

[8] Hamerich, S.W., et al. “XML-Based Dialogue
Descriptions in the GEMINI Project”. Proceedings of the
“Berliner XML-Tage 2003”, Germany, pp. 404-412.

